共查询到17条相似文献,搜索用时 62 毫秒
1.
基于特征点自动匹配的红外图像配准研究 总被引:1,自引:0,他引:1
在模糊和含噪声的红外图像配准中,利用角点检测实现特征点的选择,在提高角点提取效率的同时又保证了角点提取的精度。根据互相关的双向匹配实现对应特征点的自动匹配,然后由对应的特征点对估计出仿射变换的参数。实测的数据和计算结果表明,这种方法对于双波段红外图像的配准是有效的,而且有利于后续的图像融合。 相似文献
2.
3.
一种稳健的特征点配准算法 总被引:6,自引:4,他引:6
为了能准确快速提取特征和可靠匹配特征点对,提出一种稳健的基于特征点的配准算法。首先改进了Plessey角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度归一化互相关(Normalized cross correlation,NCC),通过双向最大相关系数匹配的方法提取出初始特征点对,用随机采样符合法(Random sample consensus,RANSAC)来剔除伪特征点对,实现特征点对的精确匹配。最后用正确匹配特征点对实现图像的配准。实验表明,该方法能够快速准确地提取两幅图像间的对应特征点,大大降低了误匹配的概率,两幅图像光照不一致、重复性纹理、旋转角度比较大等较难自动匹配情形下,仍能有效地实现图像的配准。 相似文献
4.
5.
基于特征点自动匹配的图像拼接方法 总被引:1,自引:1,他引:0
提出了一种基于特征点自动匹配的图像拼接算法,采用改进的Harris算子提取特征点,保证了提取的效率和精度,根据互相关的双向匹配实现对应特征点的自动匹配,从而建立参考图像与当前图像的对应点对,最后采用最小二乘方法得到图像间的全局变换参数,实现图像的拼接。 相似文献
6.
7.
针对SURF算法中快速Hessian矩阵行列式检测出的特征点的不连续现象,从而造成的旋转,模糊和光照变化适应性较差的不足,提出一种旋转SURF检测算子的图像配准新方法。该算法通过将SURF算法的积分图像盒子滤波模板逆时针旋转45度,引入一种可以检测角度旋转的滤波核提升检测算子对不同图像变换的匹配性能,保证新的检测算子与原算法较好的结合,同时利用改进的单纯形算法依据输入图像进行参数优化。仿真结果表明,该方法不仅保留了算法的速度优势,缩短了配准时间,而且在图像模糊变换,光照变换和JPEG压缩变换方面性能有明显的提升,此外对视角变换以及小尺度变换性能也有提高。 相似文献
8.
9.
基于角点的红外与可见光图像自动配准方法 总被引:1,自引:2,他引:1
针对红外图像与可见光图像的自动配准问题,提出了一种基于图像角点特征以及仿射变换模型的方法.利用Harris因子分别在红外图像和可见光图像上检测角点,并对两幅图像进行边缘检测,得到其边缘图像.通过角点邻域在边缘图像上的相关性,实现角点的粗匹配;通过角点的细匹配,从匹配的角点中选择两对匹配最佳的点作为仿射变换的控制点,得到仿射变换模型,并对待配准图像进行仿射变换,从而实现图像配准.实验结果表明:该方法运算速度快,可以很好地完成红外与可见光图像的自动配准. 相似文献
10.
《光学技术》2021,47(1):80-86
针对目前深度学习方法应用于医学图像配准精度不高的问题,提出了增加低分辨率辅助特征的无监督3D卷积神经网络的脑部图像配准模型。使用无监督学习的卷积网络回归出位移场,再通过空间变换层对浮动图像进行变换,然后根据构建的损失函数优化网络参数,实现端到端的无监督学习。通过添加注意力模块,在网络对应层间的连接中加入低分辨率的辅助特征,增加结构特征的同时减少多余的背景信息。方法与无监督的U-Net和VoxelMorph在MICCAI2012多图谱数据中比较,结果表明,有更高的配准精度和更快的配准速度,且不需要专家标注信息,因此在医学图像配准上具有较好的应用潜力。 相似文献
11.
针对相机运动引起的图像序列运动的问题,提出了一种基于聚类的相位相关块匹配运动估计算法。利用Harris算子分别在相邻帧图像上检测角点,以参考图像角点为中心选取一个矩形块,将块匹配法与相位相关相结合来计算图像间的运动矢量。最后,对获得的多个块的平移量,进行空间聚类从而选取运动估计比较准确的点。实验结果表明:该算法配准精度能达到亚像素,稳定性较好。 相似文献
12.
基于特征点及优化理论的图像自动拼接方法 总被引:3,自引:0,他引:3
提出了一种新的图像拼接方法,首先利用相位一致性(phase congruency)算法进行特征点检测,利用本文提出的匹配点优选策略进行特征点对自动选取,然后用LM(Levenberg-Marquardt)算法进一步优化变换矩阵,最后对拼接结果进行融合处理,获得无缝拼接的图像.该方法把基于特征点和基于优化理论的拼接方法有效相结合,且能充分利用图像重叠部分的信息,在一定程度上克服了噪声及光照不均的影响,较传统方法具有更强的鲁棒性和更高的拼接精确度.试验结果证明了该方法的有效性. 相似文献
13.
近几年图像局部特征检测和描述在机器人视觉中得到了广泛的应用,鲁棒的、快速且高精度的视觉特征检测和描述算法对飞行器进行实时的位姿估计和地图构建具有决定性意义。本文针对四旋翼无人飞行器平台的RGB-D传感器同时定位与地图构建(SLAM),讨论FAST、STAR、SIFT和SURF等检测算法和ORB、FREAK和SURF等匹配描述符的性能,对不同的特征算法进行对比评估出最合适的特征检测方法和匹配描述符。最后,基于Eclipse与OpenCV平台进行了实验,实验结果表明FAST检测和FREAK描述符比其他方法更适用于四旋翼飞行器在板视觉SLAM,且能基本满足实时性。 相似文献
14.
15.
16.
17.
图像匹配技术广泛应用于各种图像处理任务,如图像拼接、机器视觉等。通常匹配算法的精确度只能达到像素级别,但在很多图像处理任务如超分辨率重建中需要亚像素精度的图像配准。提出了一种基于相位相关的亚像素图像配准算法。根据两幅离散数字图像的相位相关矩阵中的最大值以及其附近若干点可以拟合估计出实际的峰值位置,进而实现两幅图像的亚像素运动估计。提出的算法针对热像仪采集的红外图像进行匹配实验,实验结果表明该算法精度相比通常的亚像素匹配算法较高,且具有更好的实用性。 相似文献