首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The damping property of magnetorheological (MR) elastomers is characterized by a modified dynamic mechanical-magnetic coupled analyzer. The influences of the external magnetic flux density, damping of the matrix, content of iron particles, dynamic strain, and driving frequency on the damping properties of MR elastomers were investigated experimentally. The experimental results indicate that the damping properties of MR elastomers greatly depend on the interfacial slipping between the inner particles and the matrix. Different from general composite materials, the interfacial slipping in MR elastomers is affected bythe external applied magnetic field.  相似文献   

2.
Recent spectrophotometric and molecular dynamics simulation studies have shown that the physicochemical properties and structures of water in the vicinity of hydrophobic surfaces differ from those of the bulk water. However, the interfacial water acting as a separation medium on hydrophobic surfaces has never been detected and quantified experimentally. In this study, we show that small inorganic ions and organic molecules differentiate the interfacial water formed on the surfaces of octadecyl-bonded (C(18)) silica particles from the bulk water and the chemical separation of these solutes in aqueous media with hydrophobic materials can be interpreted with a consistent mechanism, partition between the bulk water phase and the interfacial water formed on the hydrophobic surface. Thermal transition behaviour of the interfacial water incorporated in the nanopores of the C(18) silica materials and the solubility parameter of the water calculated from the distribution coefficients of organic compounds have indicated that the interfacial water may have a structure of disrupted hydrogen bonding. The thickness of the interfacial water or the limit of distance from the hydrophobic surface at which molecules and ions can sense the surface was estimated to be 1.25 ± 0.13 nm from the volume of the interfacial water obtained by a liquid chromatographic method and the surface area, suggesting that the hydrophobic effect may extend beyond the first solvation shell of water molecules directly surrounding the surfaces.  相似文献   

3.
Oxidation of the surface of cross-linked 1,4-polybutadiene provided a hydrophilic substrate that reconstructed against hot water to become more hydrophobic. Subsequent equilibration against water at room temperature returned its original hydrophilicity. These temperature-dependent changes in the relative concentrations of hydrophobic and hydrophilic moieties at the polymer/water interface are interpreted as arising from the entropic influence of chain extension, associated with rubber elasticity. As expected, the magnitude of this effect depended on the cross-link density of the polymer and the degree of oxidation of the surface. The reversibility of the reconstruction when the water was cycled between high and low temperature damped out only gradually over many cycles.  相似文献   

4.
The effect of viscoelasticity on adhesion was investigated for micropatterned epoxy surfaces and compared to nonpatterned surfaces. A two-component epoxy system was used to produce epoxy compositions with different viscoelastic properties. Pillar arrays with flat punch tip geometries were fabricated with a two-step soft lithography process. Adhesion properties were measured with a home-built adhesion tester using a spherical sapphire probe as a counter-surface. Compared to flat controls, micropatterned epoxy samples with low viscoelasticity (i.e., low damping factors) showed at least a 20-fold reduction in pull-off force per actual contact area for both low (E' = 2.3 MPa) and high (E' = 2.3 GPa) storage moduli. This antiadhesive behavior may result from poor contact formation and indicates that the adhesion performance of commonly used elastomers for dry adhesives (e.g., polydimethylsiloxane) is governed by the interfacial viscoelasticity. Adhesion significantly increased with increasing viscoelasticity. Micropatterned samples with high viscoelasticity showed a 4-fold reduction in adhesion for aspect ratio (AR) 1.1 patterns but a 2-fold enhancement in adhesion for AR 2.2 patterns. These results indicate that viscoelasticity can enhance the effect of surface patterning on adhesion and should be considered as a significant parameter in the design of artificial patterned adhesives.  相似文献   

5.
Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.  相似文献   

6.
We quantified changes in interfacial pH local to the electrochemical double layer during electrocatalysis by using a concurrent non‐faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis‐2‐butene‐1,4‐diol to form a mixture of 1,4‐butanediol and n‐butanol with selectivity that is linearly dependent on the bulk solution pH value. We show that kinetic branching occurs from a common surface‐bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH value within molecular length scales of the surface. We used the pH‐dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and found that the local pH value can vary dramatically (>3 units) relative to the bulk value even at modest current densities in well‐buffered electrolytes. This study highlights the key role of interfacial pH variation in modulating inner‐sphere electrocatalysis.  相似文献   

7.
We examine the influence of structural imperfections on mechanical damping in polydomain smectic main-chain liquid crystalline elastomers (MCLCE) subjected to small strain oscillatory shear. The mechanical loss factor tan δ = G″(ω)/G′(ω) exhibits a strong maximum (tan δ ≈ 1.0) near the smectic-isotropic (clearing) transition. “Optimal” elastomers that exhibit minimal equilibrium swelling in a good solvent are compared with highly swelling “imperfect elastomers” that contain higher concentrations of structural imperfections such as pendant chains. For the imperfect elastomers, tan δ is markedly enhanced in the isotropic state because of relaxation of pendant chains and other imperfections. However, within the smectic state, the magnitude of tan δ and its temperature dependence are similar for optimal and imperfect elastomers at ω = 1 Hz. The prominent loss peak near the clearing transition arises from segment-level relaxations that are insensitive to the details of chain connectivity. Smectic MCLCE can be tailored for applications as vibration-damping materials by manipulating the clearing transition temperature through the backbone structure or by deliberate introduction of structural imperfections such as pendant chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3267–3276, 2007  相似文献   

8.
Interfacial water structure at charged surfaces plays a key role in many physical, chemical, biological, environmental, and industrial processes. Understanding the release of interfacial water from the charged solid surfaces during dehydration process may provide insights into the mechanism of protein folding and the nature of weak molecular interactions. In this work, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by quartz crystal microbalance (QCM) measurements, has been applied to study the interfacial water structure at polyelectrolyte covered surfaces. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) chains are grafted on solid surfaces to investigate the change of interfacial water structure with varying surface charge density induced by tuning the solution pH. At pH ≤ 7.1, SFG-VS intensity is linear to the loss of mass of interfacial water caused by the dehydration of PDMAEMA chains, and no reorientation of the strongly bonded water molecules is observed in the light of χ(ppp)/χ(ssp) ratio. χ((3)) contribution to SFG signal is deduced based on the combination of SFG and QCM results. It is the first direct experimental evidence to reveal that the χ((3)) has a negligible contribution to SFG signal of the interfacial water at a charged polymer surface.  相似文献   

9.
Broadband transient absorption (TA) spectroscopy, three-pulse photon echo peak shift (3PEPS), and anisotropy decay measurements were used to study the solvation dynamics in bulk water and interfacial water at ZrO(2) surfaces, using Eosin Y as a probe. The 3PEPS results show a multiexponential behavior with two subpicosecond components that are similar in bulk and interfacial water, while a third component of several picoseconds is significantly lengthened at the interface. The bandwidth correlation function from TA spectra exhibits the same behavior, and the TA spectra are well reproduced using the doorway-window picture with the time constants from PEPS. Our results suggest that interfacial water is restricted to a thickness of less than 5 A. Also the high-frequency collective dynamics of water does not seem to be affected by the interface. On the other hand, the increase of the third component may point to a slowing down of diffusional motion at the interface, although other effects, may play a role, which are discussed.  相似文献   

10.
At the nanoscale and interfaces, the relaxation behavior of polymer melts, which affects the polymer's long-term performance in many important applications, is very different from that in the bulk. The role of polymer-substrate interfacial interaction, which does not have a bulk counterpart, has not been fully understood to date. In this study, the relaxation of nanometer-thick perfluoropolyether melts on a silicon wafer has been investigated by water contact angle measurement. The polymer-substrate interactions have been systematically changed by tailoring the polymer structure to clarify the effect of the interfacial interaction. The experimental results show that (1) when there is attractive interaction at the interface, some polymers are anchored to the substrate and others are free, (2) the attractive interfacial interaction drives the free polymers to relax at the interface, and (3) the relaxation is much slower than in the bulk, which has been attributed to the low mobility of the anchored polymer chains and the motional cooperativity between anchored and free polymer chains in the nanometer-thick films.  相似文献   

11.
The conformation of poly( N-isopropylacrylamide) chains adsorbed at a silica interface was studied as a function of concentration in the methanol-water binary solvent mixture. Both water and methanol are good solvents for PNIPAM; however, in certain mixtures cononsolvency is induced by a lowering of the LCST. This led to a decrease in the extent of the PNIPAM layer away from the interface as measured using the colloidal probe technique in the poor solvent region. At low methanol concentrations but still in the good solvent region capillary bridging between the silica surfaces with adsorbed PNIPAM layers was observed due to the increased methanol concentration in this interfacial region over that of the bulk. Furthermore, adsorption measurements showed that PNIPAM adsorbed only weakly to the silica interface with a low surface excess on the order of 0.23 mg/m (2), which allowed study of the behavior of the immobilized PNIPAM chains under highly dilute conditions using the quartz crystal microbalance. As the concentration of methanol increased toward the phase transition boundary, a slight contraction followed by an expansion of the PNIPAM was observed, which is in agreement with previous predictions from theory for polymers in solution.  相似文献   

12.
聚氨酯弹性体的相区相容性和阻尼性能研究   总被引:14,自引:0,他引:14  
合成了一系列含有不同软段的聚氨酯嵌段共聚物及接枝共聚物,并测试了其动态力学性能,结果表明,聚氨酯共聚物的相容性与大分子的链结构有关,接枝链的存在对聚氨酯嵌优共聚物相空性和阻尼性能有很大影响。  相似文献   

13.
We studied by molecular dynamics simulations the temperature dependence of hydrophobic association and drying transition of large-scale solutes. Similar to the behavior of small solutes, we found the association process to be characterized by a large negative heat capacity change. The origin of this large change in heat capacity is the high fragility of hydrogen bonds between water molecules at the interface with hydrophobic solutes; an increase in temperature breaks more hydrogen bonds at the interface than in the bulk. With increasing temperature, both entropy and enthalpy changes for association strongly decrease, while the change in free energy weakly varies, exhibiting a small minimum at high temperatures. At around T=Ts=360 K, the change in entropy is zero, a behavior similar to the solvation of small nonpolar solutes. Unexpectedly, we find that at Ts, there is still a substantial orientational ordering of the interfacial water molecules relative to the bulk. Nevertheless, at this point, the change in entropy vanishes due to a compensating contribution of translational entropy. Thus, at Ts, there is rotational order and translational disorder of the interfacial water relative to bulk water. In addition, we studied the temperature dependence of the drying-wetting transition. By calculating the contact angle of water on the hydrophobic surface at different temperatures, we compared the critical distance observed in the simulations with the critical distance predicted by macroscopic theory. Although the deviations of the predicted from the observed values are very small (8-23%), there seems to be an increase in the deviations with an increase in temperature. We suggest that these deviations emerge due to increased fluctuations, characterizing finite systems, as the temperature increases.  相似文献   

14.
The purpose of this study was to understand the relationship between the mechanism of interdiffusion of the polymer chains across the interface and the formation of crosslinks in the interfacial zone when two elastomer sheets are joined and crosslinked. It is commonly accepted that the strength of the interface thus obtained is related to the number of interlinks that are created in the molecular interphase. This number generally is considered as equal to the number of crosslinks determined in the bulk. Ethylene‐copropylene‐codiene polymer (EPDM) does not follow this general law. The slow diffusion of the chains at the interface may be responsible for the peculiar behavior observed. In order to separate the two mechanisms responsible for the interfacial strength, diffusion, and crosslinking, two crosslinking procedures, namely peroxide crosslinking at high temperature and electron beam crosslinking at room temperature, have been used. This latter procedure allows control of the diffusion depth. It has been shown that diffusion of EPDM chains is indeed occurring at a much slower rate than expected, leading to less efficient co‐crosslinking in the interfacial zone. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3189–3199, 2000  相似文献   

15.
Thermal rectification, the origin of which lies in modifying the thermal resistance in a nonlinear manner, could significantly improve the thermal management of a wide range of nano-devices (both electronic and thermoelectric), thereby improving their efficiencies. Since rectification requires a material to be inhomogeneous, it has been typically associated with solids. However, the structure of solids is relatively difficult to manipulate, which makes the tuning of thermal rectification devices challenging. Since liquids are more amenable to tuning, this could open up new applications for thermal rectification. We use molecular dynamics simulations to demonstrate thermal rectification using liquid water. This is accomplished by creating an inhomogeneous water phase, either by changing the morphology of the surface in contact with the liquid or by imposing an arbitrary external force, which in practice could be through an electric or magnetic field. Our system consists of a bulk fluid that is confined in a reservoir that is bounded by two walls, one hot and the other cold. The interfacial (Kapitza) thermal resistance at the solid-fluid interface and the density gradient of the bulk fluid both influence the magnitude of the thermal rectification. However, we find that the role of the interfacial resistance is more prominent than the application of an external force on the bulk fluid.  相似文献   

16.
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit‐enabled all‐atom molecular dynamics simulations (FEN ZI) with two (10,10) single‐walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse‐grained tube‐solvent surfaces, we found that tube–water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent‐like medium in the absence of water, tube–anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube–cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Acoustically transparent elastomers are the windows through which the US Navy views the ocean. For acoustic clarity and sensitivity, it is important that these elastomers operate well outside damping conditions as dictated by the temperatures and frequencies of interest. Damping behavior is characterized by a peak in the loss tangent and is associated with transitions in molecular mobility, such as the primary glass–rubber or alpha transition. However, the temperature and frequency location of this peak can shift in response to absorbed plasticizing fluids. This material characteristic is under investigation using dynamic mechanical analysis to assess its dependence on the plasticizer and polyurethane component chemistry. In this second stage of the research, the time–temperature superposition technique was employed to extrapolate storage modulus and loss factor to frequencies beyond the limits of the equipment. The technique appears to be valid for plasticized primary transition behavior but becomes circumspect when applied to secondary transition behavior.  相似文献   

18.
The study of adhesion has a long and rich history, with theory, experiments, and applications bridging numerous disciplines, including physics, chemistry, engineering, and medicine. This diverse interest has led to the development of a large number of methods for both enhancing and inhibiting adhesion at specific interfaces of interest. We report herein "smart" adhesion at a polymer/metal (oxide) interface that responds reversibly to changes in temperature by increasing or decreasing in magnitude. The temperature dependence in this system arises from the rubber elasticity of the polymer, 1,4-polybutadiene, and mirrors the interfacial behavior of the same polymer against water. Such systems offer unique opportunities for designing responsive materials whose properties can be actively controlled.  相似文献   

19.
Molecular dynamics simulations are performed to study the dynamics of interfacial water confined in the interdomain region of a two-domain protein, BphC enzyme. The results show that near the protein surface the water diffusion constant is much smaller and the water-water hydrogen bond lifetime is much longer than that in bulk. The diffusion constant and hydrogen bond lifetime can vary by a factor of as much as 2 in going from the region near the hydrophobic domain surface to the bulk. Water molecules in the first solvation shell persist for a much longer time near local concave sites than near convex sites. Also, the water layer survival correlation time shows that on average water molecules near the extended hydrophilic surfaces have longer residence times than those near hydrophobic surfaces. These results indicate that local surface curvature and hydrophobicity have a significant influence on water dynamics.  相似文献   

20.
The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号