首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
现有的以石墨为负极的锂离子电池能量密度逐渐接近其理论极限. 基于合金化反应机制的高容量含锂负极材料LixMy(M为能够和锂发生合金化反应的元素)是一类新兴的负极材料, 具有数倍于石墨的储锂比容量, 且可以为电池提供活性锂源. 这些特性使其能够与高容量无锂正极材料(如S, O2, FeF3和V2O5等)相匹配, 构建下一代高比能锂离子电池新体系. 本文综述了近年来高容量合金基含锂负极材料(如LixSi, LixSn, Li3P和LixAl基系列材料)的研究进展, 分析了所面临的挑战, 概述了材料的合成与电极的制备方法, 并介绍了它们在常规锂离子电池、 锂离子-硫电池及锂离子-空气电池等多个全电池体系中的应用实例, 提出并举证了其电化学性能优化与调控的策略, 最后展望了未来的研究方向.  相似文献   

2.
锂离子电池合金负极材料的研究进展   总被引:9,自引:0,他引:9  
本文综述了锂离子电池合金负极材料的研究现状,对比了各种合金负极材料的制备方法,并指出了合金负极材料目前面临的主要问题及现有的解决方案,最后提出纳米锂合金复合物将是合金负极材料发展的最终出路.  相似文献   

3.
锂离子电池纳米级负极材料的研究   总被引:3,自引:0,他引:3  
综述了锂离子电池纳米级碳材料、锡基材料和合金材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决的办法,对该类材料的发展趋势进行了展望.  相似文献   

4.
以化学还原法制备了锂离子电池纳米铜锡锑三元合金负极材料Cu6Sn5Sb5,通过XRD、TEM和电化学测试对材料进行了表征,用非原位XRD测试方法研究了材料的贮锂机理.所制备的材料颗粒粒径大小分布在15~30nm之间.在充放电电压为1.5~OV范围内,初始可逆充电容量为595mAh/g,经过30次循环后,充电容量保持79...  相似文献   

5.
硅基材料由于其高电化学容量是一种非常有发展前途的锂离子电池负极材料,但其在充放电过程中体积变化大、循环寿命差、首次库仑效率低等是阻碍其商业化的主要问题.本文综述了硅在脱嵌锂时晶体结构及表/界面的变化,以及改善其电化学性能方面的研究进展,并阐述其作为锂离子电池负极材料的研究前景.  相似文献   

6.
Co-Sn合金作为锂离子电池负极材料的研究   总被引:9,自引:0,他引:9  
采用高能机械球磨法合成了富Co的Co3Sn2合金, 测试了Co-Sn合金作为锂离子电池负极材料的充放电性能. 考察了在机械球磨过程中加入碳和高温处理球磨后样品对合金组成和电化学性能的影响. XRD测试结果表明, 加入碳后所得样品的主要成分为CoSn2. 于400和600 ℃处理后主要成分转变为CoSn和Co3Sn2. CoSn2, CoSn和Co3Sn2的充放电容量随着Sn含量的降低依次降低, 但循环性能得到提高.  相似文献   

7.
牛津  张苏  牛越  宋怀河  陈晓红  周继升 《化学进展》2015,27(9):1275-1290
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。  相似文献   

8.
采用磁控溅射法在铜箔集流体上沉积得到了厚度约2 μm的非晶硅薄膜。X-射线衍射(XRD)、高分辨率透射电镜(HRTEM)和选区电子衍射(SAED)分析表明,该薄膜为非晶态。扫描电镜(SEM)结果表明,该硅电极在电化学吸、放锂循环后体积膨胀率为300%,但电池依然保持良好的循环寿命。在1.5~0.005 V (vs Li+/Li)和0.1 mA·cm-2条件下,该薄膜电极循环100 次后容量仍能保持在0.47 mAh·cm-2以上,为初始容量的84%。每周容量衰减率仅为初周的0.16%。HRTEM和SAED结果表明,该薄膜在电化学吸、放锂循环后仍为非晶态,这可能是其具有良好电化学循环寿命的主要原因。  相似文献   

9.
采用化学还原共沉积法,对Sn-Ni合金分别进行Sb、Cu和Co掺杂改性;研究了掺杂对Sn-Ni合金电化学性能的影响.结果表明:掺杂后的合金材料综合电化学性能都有所提高,其中Co改性Sn-Ni合金的性能最佳.20次循环后,Sn-Ni-Co合金的放电容量仍高达365 mAh.g-1,比Sn-Ni合金的高49%;而Sn-Ni-Sb和Sn-Ni-Cu合金在相同条件下的放电容量仅分别提高37%和24%.  相似文献   

10.
杨军  高鹏飞 《化学进展》2011,(2):263-274
硅基负极材料具有最高的储锂容量和较低的电压平台,是最具潜力的下一代锂离子电池负极材料之一.然而,硅负极巨大的体积效应、较低的电导率以及与常规电解液的不相容性限制了其商业化应用.目前,提高硅负极性能的措施主要包括:通过设计硅基负极材料的组成和微观结构来抑制其体积变化并改善导电性,研发适于硅负极的粘结剂和电解液添加剂,探索...  相似文献   

11.
锂离子电池薄膜锡负极材料的制备及容量衰减机理研究   总被引:1,自引:0,他引:1  
以电镀的方法在铜基底上沉积薄膜锡作为锂离子电池负极材料. 运用X射线衍射、扫描电镜、电化学循环伏安、电化学充放电和交流阻抗等多种方法对其结构和性能进行表征和研究. 结果表明所制备的薄膜锡电极主要为四方晶系结构, 其初始放电(嵌锂)容量为709 mAh•g-1, 充电(脱锂)容量为561 mAh•g-1. 电化学循环伏安研究发现在嵌/脱锂过程中薄膜锡经历了多种相变过程. 电化学阻抗谱结果说明, 首次嵌锂过程中当电极电位达到1.2 V在电极表面形成SEI膜, 而当电极电位低于0.4 V表面SEI膜出现破裂, 归因于体积膨胀所致. SEM研究表明30次充放电循环后薄膜锡负极出现龟裂现象.  相似文献   

12.
合金型锂离子电池负极材料由于容量高、安全性好而备受关注. 采用磁控溅射法在铜箔上渡膜制备锡锌薄膜, 经热处理后得到合金薄膜电极. 薄膜热处理后, 表面活性层形成Cu3Sn中间合金. 合金薄膜是由尺寸在5 μm左右的合金颗粒构成, 而合金颗粒则由更小的尺寸在50 nm左右微粒组成, 该合金薄膜同时具有薄膜、中间合金和纳米结构材料的特征. 合金薄膜电极具有较高的充放电容量、良好的循环性能和非常高的充放电效率. 在0.01~1.0 V (vs. Li/Li+)区间, 电极循环200周后放电容量保持在300 mAh•g-1以上, 与第一次脱锂容量相比较, 容量保持率高达91.9%, 充放电效率大于98.0%.  相似文献   

13.
锂离子电池碳负极材料的研究进展   总被引:1,自引:0,他引:1  
本文介绍碳负极锂离子电池的研究进展,着重评述碳结构与其电化学性能之间的关系,并提出改进锂离子电池用碳负极材料性能的设想。  相似文献   

14.
改性石墨用于锂离子电池负极   总被引:2,自引:0,他引:2  
石墨可用于锂离子电池负极材料,其改性方面的研究主要有:石墨的还原、氧化、表面包膜以及物理法处理。这些方法可以改变石墨的电子状态及表面结构,能够提高石墨的性能。本文介绍了改性石墨用于锂离子电池负极的研究概况。  相似文献   

15.
以硅藻土为原料, 通过镁热还原反应得到多孔硅, 进一步利用砂磨得到纳米多孔硅, 然后通过球磨将其与片状石墨和沥青均匀混合, 采用喷雾干燥技术造粒, 高温煅烧后制备了纳米多孔硅/石墨/碳复合微球. 对所得复合微球的结构和理化性质进行了表征. 纳米多孔硅/石墨/碳复合微球作为锂离子电池负极材料展示出较高的可逆容量、 优异的循环稳定性(100次循环后容量仍为790 mA·h/g, 容量保持率可达96.7%)及较好的倍率性能.  相似文献   

16.
锂离子电池锡基复合氧化物负极材料的研究   总被引:4,自引:1,他引:4  
采用共沉淀法制备了SnSbO2.5和SnGeO3两种锡基复合氧化物粉末.XRD分析表明,这两种锡基复合氧化物的共同特点是在27°~28°处有波峰,属无定型结构.将其分别作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究它们的电化学性能.实验表明,这两种锡基复合氧化物都有较高的电化学容量,SnSbO2.5的可逆容量为1200mA·h/g,SnGeO3的可逆容量为750mA·h/g.这两种锡基复合氧化物的电化学容量远高于碳材料(石墨的理论容量为372mA·h/g),因此,这两种锡基复合氧化物可以作为锂离子电池负极材料的候选材料.  相似文献   

17.
锂离子电池负极材料非晶态MgSnO3的合成和性能研究   总被引:2,自引:0,他引:2  
锂离子电池金属氧化物负极材料越来越受到人们的重视.锡基氧化物贮锂材料具有能量密度较高、清洁无污染、原料来源广泛、价格便宜等优点,是金属氧化物类负极材料中极具发展潜力的一种负极材料.因此,近年来人们对这类材料开展了广泛的研究[1~6].  相似文献   

18.
采用脉冲激光沉积技术(PLD)制备了不同比例的Al N-Fe纳米复合薄膜(Al N和Fe摩尔比为3:1;2:1;1:1;1:2),首次研究了其作为锂离子电池负极材料的电化学行为。发现当Al N和Fe的比例为2:1时,复合薄膜具有最佳的电化学性能。在500 m A·g~(-1)电流密度下,Al N-Fe(2:1)经过100次循环充放电后容量仍能保持510 m Ah·g~(-1)。对其电化学反应机理研究发现,在放电过程中,Al N-Fe纳米复合薄膜中的Al N发生分解,Al N-Fe生成Li Al合金和Li_3N。纳米Fe颗粒的引入有效提高Al N的电化学活性;在充电过程中,部分Li_3N与Fe纳米颗粒反应生成了Fe_3N,其余部分Li_3N重新生成Al N。随后的充放电过程由Fe_3N、Al N和Al三者与Li的可逆反应共同参与,保证了Al N-Fe纳米复合薄膜优异的电化学性能。该研究为设计开发新型锂离子电池电极材料提供了一种新的思路。  相似文献   

19.
郑洪河  石磊  曲群婷  徐仲榆 《化学通报》2006,69(10):741-748
综述了锂离子电池纳米负极材料研究的最新进展,根据材料的化学组成把锂离子电池纳米级负极材料分为金属基纳米负极材料、非金属基纳米负极材料、金属-非金属复合纳米负极材料、纳米氧化物负极材料和其它纳米负极材料。论述了各类材料的优势和存在的问题,探讨了这些材料的主要制备方法与其结构、形貌和电化学性能之间的关系,展望了纳米负极材料用于锂离子电池的前景。  相似文献   

20.
改性球形天然石墨锂离子电池负极材料的研究   总被引:3,自引:0,他引:3  
王国平  张伯兰  瞿美臻  岳敏  许晓落  于作龙 《合成化学》2005,13(3):249-253,i002
将天然鳞片石墨制成球形石墨,在其表面包覆一层纳米非石墨化碳材料制成具有核壳结构的改性球形石墨。实验结果表明:此法显著提高了天然石墨的振实密度、可逆容量(达365mAh·g-1 ),首次库仑效率( >93% )和循环稳定性(循环500次后,容量保持率>80% )。分析并讨论了负极材料的结构及其与电化学性能的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号