首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are two novel Ca(2+) messengers derived respectively from NAD and NADP. Since their discovery in sea urchin eggs, both have now been shown to serve messenger functions in a wide range of cells from plant to human. In this article, a series of fluorimetric assays for cADPR, NAADP and their metabolic enzymes is compiled. The enzyme assay makes use of an analog of NAD, nicotinamide guanine dinucleotide, which is non-fluorescent but is cyclized by the enzymes to a fluorescent analog of cADPR, cyclic GDP-ribose. Other NAD utilizing enzymes are not capable of catalyzing the cyclization and thus produce no interference. The fluorimetric assays for cADPR and NAADP make use of coupled-enzyme amplification and can readily detect nanomolar concentrations of either messenger. All the assays described can be performed in multi-well format, allowing ready automation and use in high throughput screening. An added advantage of these assays is that all the required reagents are commercially available, facilitating general adoption of the techniques by all those who are interested in the physiology and enzymology of the novel Ca(2+) signaling pathways mediated by cADPR and NAADP.  相似文献   

2.
Present study demonstrated that fibrillar beta-amyloid peptide (fAbeta1-42) induced ATP release, which in turn activated NADPH oxidase via the P2X7 receptor (P2X7R). Reactive oxygen species (ROS) production in fAbeta1-42- treated microglia appeared to require Ca2+ influx from extracellular sources, because ROS generation was abolished to control levels in the absence of extracellular Ca2+. Considering previous observation of superoxide generation by Ca2+ influx through P2X7R in microglia, we hypothesized that ROS production in fAbeta-stimulated microglia might be mediated by ATP released from the microglia. We therefore examined whether fAbeta1-42-induced Ca2+ influx was mediated through P2X7R activation. In serial experiments, we found that microglial pretreatment with the P2X7R antagonists Pyridoxal-phosphate-6-azophenyl-2',4'- disulfonate (100 microM) or oxidized ATP (100 microM) inhibited fAbeta-induced Ca2+ influx and reduced ROS generation to basal levels. Furthermore, ATP efflux from fAbeta1-42- stimulated microglia was observed, and apyrase treatment decreased the generation of ROS. These findings provide conclusive evidence that fAbeta-stimulated ROS generation in microglial cells is regulated by ATP released from the microglia in an autocrine manner.  相似文献   

3.
With the imaging fluorescence probe of Ca2+ (fluo-3) and a laser scanning confocal micro-scope, the spontaneous localized calcium release event was first discovered in resting rat cardiac myocytes by Cheng[1] in 1993. A mathematical simulation is developed with computer in order to reveal the effect, which is immediately suggested that these events are likely to reflect the local-ized release of Ca2+ from a small cluster of ryanodine-sensitive Ca2+ release channels in sar-coplasmic reticulum …  相似文献   

4.
Na+-Ca2+ exchanger (NCX) transports Ca2+ coupled with Na+ across the plasma membrane in a bi-directional mode. Ca2+ flux via NCX mediates osteogenic processes, such as formation of extracellular matrix proteins and bone nodules. However, it is not clearly understood how the NCX regulates cellular Ca2+ movements in osteogenic processes. In this study, the role of NCX in modulating Ca2+ content of intracellular stores ([Ca2+]ER) was investigated by measuring intracellular Ca2+ activity in isolated rat osteoblasts. Removal of extracellular Na+ elicited a transient increase of intracellular Ca2+ concentration ([Ca2+]i). Pretreatment of antisense oligodeoxynucleotide (AS) against NCX depressed this transient Ca2+ rise and raised the basal level of [Ca2+]i. In AS-pretreated cells, the expression and activity of alkaline phosphatase (ALP), an osteogenic marker, were decreased. However, the cell viability was not affected by AS-pretreatment. Suppression of NCX activity by the AS-pretreatment decreased ATP-activated Ca2+ release from intracellular stores and significantly enhanced Ca2+ influx via store operated calcium influx (SOCI), compared to those of S-pretreated or control cells. These results strongly suggest that NCX has a regulatory role in cellular Ca2+ pathways in osteoblasts by modulating intracellular Ca2+ content.  相似文献   

5.
BACKGROUND: Chromophore-assisted laser inactivation (CALI) is a powerful method for the study of in situ protein function in cellular processes. By using CALI, it is possible to abrogate the function of a target protein with unprecedented spatial and temporal resolution. However, CALI has some limitations, which restrict wider biological application, owing mainly to the use of antibody for target recognition. To circumvent the limitations, we have developed small molecule-based CALI (smCALI). RESULTS: The inositol 1,4,5-trisphosphate receptor (IP3R) was selected as the target protein and a malachite green-conjugated IP3 analog, MGIP3, was used as a small-molecular probe. We examined the effect of MGIP3-based CALI on Ca2+ release via IP3R using permeabilized smooth muscle cells. When the cells were treated with MGIP3 followed by laser irradiation, the IP3-induced Ca2+ release rate was decreased in a concentration- and irradiation time-dependent manner. The effect was specific for IP3R, because the Ca2+ uptake function of the co-localized sarco/endoplasmic reticulum Ca2+-ATPase was not affected. CONCLUSIONS: IP3R was specifically inactivated by smCALI using MGIP3. The efficiency of inactivation was calculated to be substantially greater than that of antibody-based CALI. The efficient and specific inactivation of IP3R would allow us to obtain an insight into spatiotemporal roles of IP3R in various cell functions. Our results may be considered to be a first step for a wider application of smCALI as a useful method to study spatiotemporal protein functions.  相似文献   

6.
The effect of the calcium-binding protein regucalcin on the Ca2+ transport system in the liver microsomes from fed rats was investigated. Ca2+ transport was assayed by the method of Millipore filtration to estimate microsomal 45Ca2+ accumulation following addition of 10 mM adenosine triphosphate (ATP). 45Ca2+ uptake was retarded by the presence of regucalcin (1.0-4.0 microM). This retardation was remarkable at 1 min after regucalcin addition, while appreciable retardation was no longer seen at 5 min. Regucalcin (2.0 microM)-induced retardation of 45Ca2+ uptake was prevented by the presence of calmodulin (5 micrograms/ml). Calmodulin alone (1 and 5 micrograms/ml) caused a significant increase in 45Ca2+ uptake at 3 min after the start of incubation. Also, regucalcin (2.0 microM)-induced retardation of 45Ca2+ uptake was completely blocked by the presence of a Ca2(+)-trapping agent, oxalate (3 mM). On the other hand, 45Ca2+, which accumulated in microsomes during 5 min after ATP addition, was markedly released by the addition of regucalcin. This release was dose-dependent (0.5-4.0 microM). Guanosine triphosphate (GTP; 10-100 microM) caused a significant release of 45Ca2+ from the microsomes. The presence of regucalcin (2.0 microM) further enhanced the GTP effect. Regucalcin (2.0 microM)-induced release of 45Ca2+ was not blocked by the presence of the protein thiol-protecting agent dithiothreitol (0.1 mM). The presence of oxalate (3 mM) completely blocked the effect of regucalcin on 45Ca2+ release from the microsomes. These results indicate that regucalcin stimulates Ca2+ release from liver microsomes, and that the protein retards the microsomal Ca2+ uptake. The present study suggests that regucalcin can regulate the Ca2+ transport system in rat liver microsomes.  相似文献   

7.
A membrane-permeant malachite green-conjugated IP3 analog (MGIP3/PM) was synthesized as a probe for small molecule-based CALI (smCALI), and its effect on the Ca2+ signaling in intact DT40 chicken B cells was examined. In DT40 B cells treated with the smCALI probe, laser irradiation inhibited IP3-induced Ca2+ oscillations in response to B cell receptor stimulation, demonstrating that IP3R was acutely inactivated. We then applied smCALI to clarify the mechanism of capacitative Ca2+ entry (CCE), in which involvement of IP3R has been suggested. Despite the inactivation of IP3R by smCALI, thapsigargin-induced CCE remained unaffected, providing evidence that functional IP3R is not required for CCE in DT40 cells. These results demonstrate the potency of the smCALI technique for the study of the roles of IP3R in complex intracellular Ca2+ dynamics.  相似文献   

8.
A novel Zn2+-selective visible wavelength fluoroionophore (FluoZin-3, 9) was synthesized. The chelating portion of the molecule resembles known EGTA-based Ca2+-selective fluoroionophores, except that one of the N-acetic acid moieties has been deleted in 9. FluoZin-3 is virtually non-fluorescent in the absence of Zn2+, and exhibits a several hundred-fold fluorescence increase upon saturation with Zn2+( approximately 100 nM), with a Kd = 15 +/- 2 nM. A 1:1 binding stoichiometry of 9:Zn2+ was determined, and the fluorescence of the complex is pH-independent at pH > 6. FluoZin-3 was used to monitor Zn2+ that was co-secreted with insulin from pancreatic beta-cells by exocytosis following stimulation with glucose. The total Zn2+ concentration near the cells reached 600 nM, and Zn2+ was detectable at least 15 mum away from secreting cells. Heterogeneity in secretion among cells was indicated in that some cells in a cluster did not release Zn2+. Also, within secreting cells some regions of the cell membrane gave rise to secretion while others did not, suggesting active zones of secretion on the cell surface.  相似文献   

9.
A new fluorescent Ca2+ indicator STDIn-AM for detecting [Ca2+]i transients in cultured smooth muscle cells is presented. By making a comparison, the difference between STDIn and fluo-3 is discussed in detail. Using the new Ca2+ indicator, the mechanism of 5-hydroxytryptamino (5-HT) induced intracellular calcium dynamics in stomach fundus smooth muscle cells (SFSMC) of rats is investigated. It is shown that in contrast with fluo-3, STDIn is uniformly distributed in the cytosolic compartment but excluded from the nucleus, when it is transfected into cells. This feature makes it a real cytosol Ca2+ indicator and can reflect changes of cytosol [Ca2+] more accurately than that of fluo-3. In addition, STDIn responds to the [Ca2+]i transients more sensitive and faster than fluo-3. The results also show that, the L-type Ca2+channel inhibitor Mn9202 and the PLC inhibitor Compound 48/80 can significantly inhibit the [Ca2+]i elevation induced by 5-HT, while the PKC inhibitor D-Sphingosine can enhance the effect of  相似文献   

10.
Doxorubicin (DOX) is one of the most potent anticancer drugs and induces acute cardiac arrhythmias and chronic cumulative cardiomyopathy. Though DOX-induced cardiotoxicity is known to be caused mainly by ROS generation, a disturbance of Ca2+ homeostasis is also implicated one of the cardiotoxic mechanisms. In this study, a molecular basis of DOX-induced modulation of intracellular Ca2+ concentration ([Ca2+]i) was investigated. Treatment of adult rat cardiomyocytes with DOX increased [Ca2+]i irrespectively of extracellular Ca2+, indicating DOX-mediated Ca2+ release from intracellular Ca2+ stores. The DOX-induced Ca2+ increase was slowly processed and sustained. The Ca2+ increase was inhibited by pretreatment with a sarcoplasmic reticulum (SR) Ca2+ channel blocker, ryanodine or dantrolene, and an antioxidant, alpha-lipoic acid or alpha-tocopherol. DOX-induced ROS generation was observed immediately after DOX treatment and increased in a time-dependent manner. The ROS production was significantly reduced by the pretreatment of the SR Ca2+ channel blockers and the antioxidants. Moreover, DOX-mediated activation of caspase-3 was significantly inhibited by the Ca2+ channel blockers and a-lipoic acid but not a-tocopherol. In addition, cotreatment of ryanodine with alpha-lipoic acid resulted in further inhibition of the casapse-3 activity. These results demonstrate that DOX-mediated ROS opens ryanodine receptor, resulting in an increase in [Ca2+]i and that the increased [Ca2+]i induces ROS production. These observations also suggest that DOX/ROS-induced increase of [Ca2+]i plays a critical role in damage of cardiomyocytes.  相似文献   

11.
The effect of Zn2+ on the O2- generation and change in intracellular Ca2+ concentration ([Ca2+]i) of rat peritoneal neutrophils was studied. Zymosan (serum-treated zymosan (STZ))-induced O2- generation was inhibited by Zn2+ at concentrations as low as 10 microM. A large amount of the inhibition was observed in the absence of extracellular Ca2+ but the inhibition could not be restored by increasing the extracellular Ca2+ concentration, indicating that Zn2+ does not necessarily inhibit the O2- generation competitively with extracellular Ca2+. In the absence of extracellular Ca2+, Zn2+ inhibited STZ-induced transient increase in [Ca2+]i in the concentration range that evoked a marked inhibition in the O2- generation. On the other hand, Zn2+ did not inhibit significantly STZ-induced uptake of 45Ca2+ from extracellular medium by the cells. From these results, it is suggested that Zn2+ inhibits STZ-induced release of Ca2+ from intracellular storage sites, resulting in the suppression of the activation mechanism of neutrophils.  相似文献   

12.
Many studies on intracellular calcium ([Ca2+](i)) and intracellular pH (pH(i)) have been carried out due to their importance in regulation of different cellular functions. However, most of the previous studies are focused on human or mammalian cells. The purpose of the present study was to characterize the effect of Rhodojaponin-III (R-III) on [Ca2+](i) and pH(i) and the proliferation of Sf9 cells. R-III strongly inhibited Sf9 cells proliferation with a time- and dose-dependent manner. Flow cytometry established that R-III interfered with Sf9 cells division and arrested them in G2/M. By using confocal scanning technique, effects of R-III on intracellular free calcium ([Ca2+](i)) and intracellular pH (pH(i)) in Sf9 cells were determined. R-III induced a significant dose-dependent (1, 10, 100, 200 μg/mL) increase in [Ca2+](i) and pH(i) of Sf9 cells in presence of Ca2+-containing solution (Hanks) and an irreversible decrease in the absence of extra cellular Ca2+. We also found that both extra cellular Ca2+ and intracellular Ca2+ stores contributed to the increase of [Ca2+](i), because completely treating Sf9 cells with CdCl(2) (5 mM), a Ca2+ channels blocker, R-III (100 μg/mL) induced a transient elevation of [Ca2+](i) in case of cells either in presence of Ca2+ containing or Ca2+ free solution. In these conditions, pH(i) showed similar changes with that of [Ca2+](i) on the whole. Accordingly, we supposed that there was a certain linkage for change of [Ca2+](i), cell cycle arrest, proliferation inhibition in Sf9 cells induced by R-III.  相似文献   

13.
The effect of heparin on the calcium-binding protein regucalcin-stimulated Ca2+ release from rat liver microsomes was investigated. Ca2+ release was assayed by the method of Millipore filtration to estimate microsomal 45Ca2+ accumulation following the addition of 10 mM adenosine triphosphate. The addition of regucalcin (1.0 microM) or inositol 1,4,5-trisphosphate [Ins(1,4,5)P3; 1.0 microM] stimulated 45Ca2+ release from rat liver microsomes. These effects were completely inhibited by the presence of heparin (10.0 micrograms/ml). Regucalcin did not enhance the effect of Ins(1,4,5)P3. These results suggest that regucalcin affects 45Ca2+ release involved in Ins(1,4,5)P3 action in rat liver microsomes.  相似文献   

14.
Generation of in vitro cellular assays using fluorescence measurements at heterologously expressed NMDA receptors would speed up the process of ligand characterization and enable high-throughput screening. The major drawback to the development of such assays is the cytotoxicity caused by Ca(2+)-flux into the cell via NMDA receptors upon prolonged activation by agonists present in the culture medium. In the present study, we established four cell lines with stable expression of NMDA receptor subtypes NR1/NR2A, NR1/NR2B, NR1/NR2C, or NR1/NR2D in BHK-21 cells. To assess the usefulness of the stable cell lines in conjunction with intracellular calcium ([Ca(2+)](i)) measurements for evaluation of NMDA receptor pharmacology, several ligands were characterized using this method. The results were compared to parallel data obtained by electrophysiological recordings at NMDA receptors expressed in Xenopus oocytes. This comparison showed that agonist potencies determined by [Ca(2+)](i) measurements and electrophysiological recordings correlated well, meaning that the stable cell lines in conjunction with [Ca(2+)](i) measurements provide a useful tool for characterization of NMDA receptor ligands. The agonist series of conformationally constrained glutamate analogues (2S,3R,4S)-alpha-(carboxycyclopropyl)glycine (CCG), 1-aminocyclobutane-r-1,cis-3-dicarboxylic acid (trans-ACBD), and (+/-)-1-aminocyclopentane-r-1,cis-3-dicarboxylic acid (cis-ACPD), as well as the highly potent agonist tetrazolylglycine were among the characterized ligands that were assessed with respect to subtype selectivity at NMDA receptors. However, none of the characterized agonists displays more than 2-3 fold selectivity towards a specific NMDA receptor subtype. Thus, the present study provides a broad pharmacological characterization of structurally diverse ligands at recombinant NMDA receptor subtypes.  相似文献   

15.
16.
High ambient Ca2+ at bone resorption sites have been implicated to play an important role in the regulation of bone remodeling. The present study was performed to clarify the mode of high extracellular Ca2+ (Ca2+(e))-induced modulation of osteoclastogenesis and the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), thereby to define its role in osteoclast formation. Mouse bone marrow cells were cocultured with osteoblastic cells in the absence or presence of osteoclastogenic factors such as 1,25-dihydroxyvitaminD3 (1,25-(OH)2vitD3)and macrophage colony-stimulating factor/soluble RANKL. Ca2+ concentration in media (1.8 mM) was adjusted to 3, 5, 7 or 10 mM. Osteoclast formation was confirmed by the appearance of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells and the expression of osteoclast phenotypic markers (calcitonin receptor, vitronectin receptor, cathepsin K, matrix metalloproteinase-9, carbonic anhydrase 2). High Ca2+(e) alone significantly stimulated osteoclast formation in a dose-dependent manner. However, in the presence of highly osteoclastogenic factors, high Ca2+(e) significantly inhibited osteoclastogenesis. High Ca2+(e) alone continuously up-regulated RANKL expression while only transiently increased OPG expression. However, in the presence of 1,25-(OH)(2)vitD(3), high Ca2+(e) did not change the 1,25-(OH)2vitD3-induced RANKL expression while increased OPG expression. Taken together, these findings suggest that high Ca2+(e) alone increase osteoclastogenesis but inhibit in the presence of other osteoclastogenic factors. In addition, high CaCa2+(e)-induced osteoclastogenesis may be mediated by osteoblasts via up-regulation of RANKL expression. Meanwhile up-regulated OPG might participate in the inhibitory effect of high Ca2+(e) on 1,25-(OH)2vitD3-induced osteoclastogenesis.  相似文献   

17.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca2+-mobilizing second messenger, cyclic ADP- ribose (cADPR), from beta-NAD+. A prototype of mammalian ADPR-cyclases is a lymphocyte antigen CD38. Accumulating evidence indicates that ADPR-cyclases other than CD38 are expressed in various cells and organs. In this study, we discovered a small molecule inhibitor of kidney ADPR-cyclase. This compound inhibited kidney ADPR-cyclase activity but not CD38, spleen, heart or brain ADPR-cyclase activity in vitro. Characterization of the compound in a cell-based system revealed that an extracellular calcium-sensing receptor (CaSR)- mediated cADPR production and a later long-lasting increase in intracellular Ca2+ concentration ([Ca2+]i) in mouse mesangial cells were inhibited by the pre-treatment with this compound. In contrast, the compound did not block CD3/TCR-induced cADPR production and the increase of [Ca2+]i in Jurkat T cells, which express CD38 exclusively. The long-lasting Ca2+ signal generated by both receptors was inhibited by pre-treatment with an antagonistic cADPR derivative, 8-Br-cADPR, indicating that the Ca2+ signal is mediated by the ADPR-cyclase metabolite, cADPR. Moreover, among structurally similar compounds tested, the compound inhibited most potently the cADPR production and Ca2+ signal induced by CaSR. These findings provide evidence for existence of a distinct ADPR-cyclase in the kidney and basis for the development of tissue specific inhibitors.  相似文献   

18.
The effect of light on calcium transport was studied. Bull sperm cells were irradiated with an He-Ne (630 mm) laser and a 780 nm diode laser at various energy doses, and 45Ca2+ uptake was measured by the filtration technique. It was found that there is an accelerated Ca2+ transport in the irradiated cells, which means that laser light can stimulate Ca2+ exchange through the cell membrane. This may cause transient changes in the cytoplasmic Ca2+ concentration which, in spermatozoa, has a regulatory role in control of motility and acrosome reaction, and in other cells can trigger mitosis.  相似文献   

19.
Shim JS  Lee J  Park HJ  Park SJ  Kwon HJ 《Chemistry & biology》2004,11(10):1455-1463
HBC (4-[3,5-Bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid) is a recently developed curcumin derivative which exhibits potent inhibitory activities against the proliferation of several tumor cell lines. In the present study, we identified Ca2+/calmodulin (Ca2+/CaM) as a direct target protein of HBC using phage display biopanning. Ca2+/CaM-expressing phages specifically bound to the immobilized HBC, and the binding was Ca2+ dependent. Moreover, flexible docking modeling demonstrated that HBC is compatible with the binding cavity for a known inhibitor, W7, in the C-terminal hydrophobic pocket of Ca2+/CaM. In biological systems, HBC induced prolonged phosphorylation of ERK1/2 and activated p21(WAF1) expression, resulting in the induction of G0/G1 cell cycle arrest in HCT15 colon cancer cells. These results suggest that HBC inhibits the cell cycle progression of colon cancer cells via antagonizing of Ca2+/CaM functions.  相似文献   

20.
Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175--4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号