首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group $G$ is called a $\mathcal{P }_1$ -group if it has a normal series of finite length whose factors have rank $1$ , while $G$ is an $\mathcal{H }_1$ -group if it has an ascending normal series of the same type. This paper investigates properties of $\mathcal{P }_1$ -groups and $\mathcal{H }_1$ -groups which correspond to known properties of nilpotent and supersoluble groups.  相似文献   

2.
For a group $G$ , denote by $\omega (G)$ the number of conjugacy classes of normalizers of subgroups of $G$ . Clearly, $\omega (G)=1$ if and only if $G$ is a Dedekind group. Hence if $G$ is a 2-group, then $G$ is nilpotent of class $\le 2$ and if $G$ is a $p$ -group, $p>2$ , then $G$ is abelian. We prove a generalization of this. Let $G$ be a finite $p$ -group with $\omega (G)\le p+1$ . If $p=2$ , then $G$ is of class $\le 3$ ; if $p>2$ , then $G$ is of class $\le 2$ .  相似文献   

3.
We investigate the vanishing of the group $SK_1(\Lambda (G))$ for the Iwasawa algebra $\Lambda (G)$ of a pro- $p$ $p$ -adic Lie group $G$ (with $p \ne 2$ ). We reduce this vanishing to a linear algebra problem for Lie algebras over arbitrary rings, which we solve for Chevalley orders in split reductive Lie algebras.  相似文献   

4.
5.
Let $G$ be a finite group. A subgroup $H$ of $G$ is called an $\mathcal{H }$ -subgroup of $G$ if $N_G(H)\cap H^g\le H$ for all $g\in G$ . A group $G$ is said to be an ${\mathcal{H }}_p$ -group if every cyclic subgroup of $G$ of prime order or order 4 is an $\mathcal{H }$ -subgroup of $G$ . In this paper, the structure of a finite group all of whose second maximal subgroups are ${\mathcal{H }}_p$ -subgroups has been characterized.  相似文献   

6.
Let $G$ be a unipotent algebraic group over an algebraically closed field $\mathtt{k }$ of characteristic $p>0$ and let $l\ne p$ be another prime. Let $e$ be a minimal idempotent in $\mathcal{D }_G(G)$ , the $\overline{\mathbb{Q }}_l$ -linear triangulated braided monoidal category of $G$ -equivariant (for the conjugation action) $\overline{\mathbb{Q }}_l$ -complexes on $G$ under convolution (with compact support) of complexes. Then, by a construction due to Boyarchenko and Drinfeld, we can associate to $G$ and $e$ a modular category $\mathcal{M }_{G,e}$ . In this paper, we prove that the modular categories that arise in this way from unipotent groups are precisely those in the class $\mathfrak{C }_p^{\pm }$ .  相似文献   

7.
Let $(B,\mathcal{M }_B)$ be a noetherian regular local ring of dimension $2$ with residue field $B/\mathcal{M }_B$ of characteristic $p>0$ . Assume that $B$ is endowed with an action of a finite cyclic group $H$ whose order is divisible by $p$ . Associated with a resolution of singularities of $\mathrm{Spec}B^H$ is a resolution graph $G$ and an intersection matrix $N$ . We prove in this article three structural properties of wild quotient singularities, which suggest that in general, one should expect when $H= \mathbb{Z }/p\mathbb{Z }$ that the graph $G$ is a tree, that the Smith group $\mathbb{Z }^n/\mathrm{Im}(N)$ is killed by $p$ , and that the fundamental cycle $Z$ has self-intersection $|Z^2|\le p$ . We undertake a combinatorial study of intersection matrices $N$ with a view towards the explicit determination of the invariants $\mathbb{Z }^n/\mathrm{Im}(N)$ and $Z$ . We also exhibit explicitly the resolution graphs of an infinite set of wild $\mathbb{Z }/2\mathbb{Z }$ -singularities, using some results on elliptic curves with potentially good ordinary reduction which could be of independent interest.  相似文献   

8.
For a finite $p$ -group $G$ and a bounded below $G$ -spectrum $X$ of finite type mod  $p$ , the $G$ -equivariant Segal conjecture for $X$ asserts that the canonical map $X^G \rightarrow X^{hG}$ , from $G$ -fixed points to $G$ -homotopy fixed points, is a $p$ -adic equivalence. Let $C_{p^n}$ be the cyclic group of order  $p^n$ . We show that if the $C_p$ -equivariant Segal conjecture holds for a $C_{p^n}$ -spectrum $X$ , as well as for each of its geometric fixed point spectra $\varPhi ^{C_{p^e}}(X)$ for $0 < e < n$ , then the $C_{p^n}$ -equivariant Segal conjecture holds for  $X$ . Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.  相似文献   

9.
If $G$ is a triangle-free graph, then two Gallai identities can be written as $\alpha (G)+\overline{\chi }(L(G))=|V(G)|=\alpha (L(G))+\overline{\chi }(G)$ , where $\alpha $ and $\overline{\chi }$ denote the stability number and the clique-partition number, and $L(G)$ is the line graph of  $G$ . We show that, surprisingly, both equalities can be preserved for any graph $G$ by deleting the edges of the line graph corresponding to simplicial pairs of adjacent arcs, according to any acyclic orientation of  $G$ . As a consequence, one obtains an operator $\Phi $ which associates to any graph parameter $\beta $ such that $\alpha (G) \le \beta (G) \le \overline{\chi }(G)$ for all graph $G$ , a graph parameter $\Phi _\beta $ such that $\alpha (G) \le \Phi _\beta (G) \le \overline{\chi }(G)$ for all graph $G$ . We prove that $\vartheta (G) \le \Phi _\vartheta (G)$ and that $\Phi _{\overline{\chi }_f}(G)\le \overline{\chi }_f(G)$ for all graph  $G$ , where $\vartheta $ is Lovász theta function and $\overline{\chi }_f$ is the fractional clique-partition number. Moreover, $\overline{\chi }_f(G) \le \Phi _\vartheta (G)$ for triangle-free $G$ . Comparing to the previous strengthenings $\Psi _\vartheta $ and $\vartheta ^{+ \triangle }$ of $\vartheta $ , numerical experiments show that $\Phi _\vartheta $ is a significant better lower bound for $\overline{\chi }$ than $\vartheta $ .  相似文献   

10.
Suppose $M$ is a manifold with boundary. Choose a point $o\in \partial M$ . We investigate the prescribed Ricci curvature equation $\mathop {\mathrm{Ric}}\nolimits (G)=T$ in a neighborhood of $o$ under natural boundary conditions. The unknown $G$ here is a Riemannian metric. The letter $T$ on the right-hand side denotes a (0,2)-tensor. Our main theorems address the questions of the existence and the uniqueness of solutions. We explain, among other things, how these theorems may be used to study rotationally symmetric metrics near the boundary of a solid torus $\mathcal{T }$ . The paper concludes with a brief discussion of the Einstein equation on $\mathcal{T }$ .  相似文献   

11.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

12.
Let $\mathcal{R }$ be a prime ring of characteristic different from $2, \mathcal{Q }_r$ the right Martindale quotient ring of $\mathcal{R }, \mathcal{C }$ the extended centroid of $\mathcal{R }, \mathcal{I }$ a nonzero left ideal of $\mathcal{R }, F$ a nonzero generalized skew derivation of $\mathcal{R }$ with associated automorphism $\alpha $ , and $n,k \ge 1$ be fixed integers. If $[F(r^n),r^n]_k=0$ for all $r \in \mathcal{I }$ , then there exists $\lambda \in \mathcal{C }$ such that $F(x)=\lambda x$ , for all $x\in \mathcal{I }$ . More precisely one of the following holds: (1) $\alpha $ is an $X$ -inner automorphism of $\mathcal{R }$ and there exist $b,c \in \mathcal{Q }_r$ and $q$ invertible element of $\mathcal{Q }_r$ , such that $F(x)=bx-qxq^{-1}c$ , for all $x\in \mathcal{Q }_r$ . Moreover there exists $\gamma \in \mathcal{C }$ such that $\mathcal{I }(q^{-1}c-\gamma )=(0)$ and $b-\gamma q \in \mathcal{C }$ ; (2) $\alpha $ is an $X$ -outer automorphism of $\mathcal{R }$ and there exist $c \in \mathcal{Q }_r, \lambda \in \mathcal{C }$ , such that $F(x)=\lambda x-\alpha (x)c$ , for all $x\in \mathcal{Q }_r$ , with $\alpha (\mathcal{I })c=0$ .  相似文献   

13.
Let $\mathcal{A}$ and $\mathcal{B}$ be unital rings, and $\mathcal{M}$ be an $\left( {\mathcal{A},\mathcal{B}} \right)$ -bimodule, which is faithful as a left $\mathcal{A}$ -module and also as a right $\mathcal{B}$ -module. Let $\mathcal{U} = Tri\left( {\mathcal{A},\mathcal{M},\mathcal{B}} \right)$ be the triangular algebra. In this paper, we give some different characterizations of Lie higher derivations on $\mathcal{U}$ .  相似文献   

14.
Let $G$ be a finite $p$ -solvable group for some prime $p$ and suppose that the set of $p$ -regular conjugacy class sizes is $\{1, m, mn\}$ with $(m, n)=1$ and $m$ coprime to $p$ . We show that $m=q^b$ for some prime $q$ and we describe the structure of the $p$ -complements of $G$ .  相似文献   

15.
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$ . $H$ is said to be an $s$ -quasinormally embedded in $G$ if for each prime $p$ dividing the order of $H$ , a Sylow $p$ -subgroup of $H$ is also a Sylow $p$ -subgroup of some $S$ -quasinormal subgroup of $G$ ; $H$ is said to be $c$ -normal in $G$ if $G$ has a normal subgroup $T$ such that $G=HT$ and $H\cap T\le H_{G}$ , where $H_{G}$ is the normal core of $H$ in $G$ . We fix in every non-cyclic Sylow subgroup $P$ of $G$ some subgroup $D$ satisfying $1<|D|<|P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$ -quasinormally embedded or $c$ -normal in $G$ . Some recent results are generalized and unified.  相似文献   

16.
Let $E_{/_\mathbb{Q }}$ be an elliptic curve of conductor $Np$ with $p\not \mid N$ and let $f$ be its associated newform of weight $2$ . Denote by $f_\infty $ the $p$ -adic Hida family passing though $f$ , and by $F_\infty $ its $\varLambda $ -adic Saito–Kurokawa lift. The $p$ -adic family $F_\infty $ of Siegel modular forms admits a formal Fourier expansion, from which we can define a family of normalized Fourier coefficients $\{\widetilde{A}_T(k)\}_T$ indexed by positive definite symmetric half-integral matrices $T$ of size $2\times 2$ . We relate explicitly certain global points on $E$ (coming from the theory of Darmon points) with the values of these Fourier coefficients and of their $p$ -adic derivatives, evaluated at weight $k=2$ .  相似文献   

17.
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$ . In this paper we prove that a finite group $G$ is $p$ -nilpotent if every minimal subgroup of $P\bigcap G^{N}$ is weakly-supplemented in $G$ , and when $p=2$ either every cyclic subgroup of $P\bigcap G^{N}$ with order 4 is weakly-supplemented in $G$ or $P$ is quaternion-free, where $p$ is the smallest prime number dividing the order of $G$ , $P$ a sylow $p$ -subgroup of $G$ .  相似文献   

18.
Let $\{\varphi _n(z)\}_{n\ge 0}$ be a sequence of inner functions satisfying that $\zeta _n(z):=\varphi _n(z)/\varphi _{n+1}(z)\in H^\infty (z)$ for every $n\ge 0$ and $\{\varphi _n(z)\}_{n\ge 0}$ has no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace $\mathcal{M }$ of $H^2(\mathbb{D }^2)$ . The ranks of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }_z$ and $\mathcal{F }^*_z$ respectively are determined, where $\mathcal{F }_z$ is the fringe operator on $\mathcal{M }\ominus w\mathcal{M }$ . Let $\mathcal{N }= H^2(\mathbb{D }^2)\ominus \mathcal{M }$ . It is also proved that the rank of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }^*_z$ equals to the rank of $\mathcal{N }$ for $T^*_z$ and $T^*_w$ .  相似文献   

19.
The present paper proposes a general theory for $\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) $ -complete partially ordered sets (alias $\mathcal{Z} _{1}$ -join complete and $\mathcal{Z}_{2}$ -meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections $\mathcal{Z}_{i}$ (i?=?1,...,4) and $\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) $ , the category $\mathcal{Q}$ P of $\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) $ -complete partially ordered sets and $\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) $ -continuous (alias $\mathcal{ Z}_{3}$ -join preserving and $\mathcal{Z}_{4}$ -meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category $\mathcal{Q}$ S of $\mathcal{Q}$ -spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory $ \mathcal{Q}$ P s of $\mathcal{Q}$ P of all $\mathcal{Q}$ -spatial objects and the full subcategory $\mathcal{Q}$ S s of $\mathcal{Q}$ S of all $\mathcal{Q}$ -sober objects. Here $\mathcal{Q}$ -spatiality and $\mathcal{Q}$ -sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to $\mathcal{Z}$ -compact generation and $\mathcal{Z}$ -sobriety have also been pointed out in this paper.  相似文献   

20.
In the given article, enveloping C*-algebras of AJW-algebras are considered. Conditions are given, when the enveloping C*-algebra of an AJW-algebra is an AW*-algebra, and corresponding theorems are proved. In particular, we proved that if $\mathcal{A}$ is a real AW*-algebra, $\mathcal{A}_{sa}$ is the JC-algebra of all self-adjoint elements of $\mathcal{A}$ , $\mathcal{A}+i\mathcal{A}$ is an AW*-algebra and $\mathcal{A}\cap i\mathcal{A} = \{0\}$ then the enveloping C*-algebra $C^*(\mathcal{A}_{sa})$ of the JC-algebra $\mathcal{A}_{sa}$ is an AW*-algebra. Moreover, if $\mathcal{A}+i\mathcal{A}$ does not have nonzero direct summands of type I2, then $C^*(\mathcal{A}_{sa})$ coincides with the algebra $\mathcal{A}+i\mathcal{A}$ , i.e. $C^*(\mathcal{A}_{sa})= \mathcal{A}+i\mathcal{A}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号