首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider weak solutions ${u \in u_0 + W^{1,2}_0(\Omega,\mathbb{R}^N) \cap L^{\infty}(\Omega,\mathbb{R}^N)}$ of second-order nonlinear elliptic systems of the type $$- {\rm div} \,a (\, \cdot \,, u, Du ) = b(\, \cdot \,,u,Du)\qquad \text{ in }\Omega$$ with an inhomogeneity satisfying a natural growth condition. In dimensions ${n \in \{2,3,4\}}$ , we show that ${\mathcal{H}^{n-1}}$ -almost every boundary point is a regular point for Du, provided that the boundary data and the coefficients are sufficiently smooth.  相似文献   

2.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

3.
Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

4.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

5.
Let ?? be an open subset of R d and ${ K=-\sum^d_{i,j=1}\partial_i\,c_{ij}\,\partial_j+\sum^d_{i=1}c_i\partial_i+c_0}$ a second-order partial differential operator with real-valued coefficients ${c_{ij}=c_{ji}\in W^{1,\infty}_{\rm loc}(\Omega),c_i,c_0\in L_{\infty,{\rm loc}}(\Omega)}$ satisfying the strict ellipticity condition ${C=(c_{ij}) >0 }$ . Further let ${H=-\sum^d_{i,j=1} \partial_i\,c_{ij}\,\partial_j}$ denote the principal part of K. Assuming an accretivity condition ${C\geq \kappa (c\otimes c^{\,T})}$ with ${\kappa >0 }$ , an invariance condition ${(1\!\!1_\Omega, K\varphi)=0}$ and a growth condition which allows ${\|C(x)\|\sim |x|^2\log |x|}$ as |x| ?? ?? we prove that K is L 1-unique if and only if H is L 1-unique or Markov unique.  相似文献   

6.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

7.
The initial-value problem for $$u_t=-\Delta^2 u - \mu\Delta u - \lambda \Delta |\nabla u|^2 + f(x)\qquad \qquad (\star)$$ is studied under the conditions ${{\frac{\partial}{\partial\nu}} u={\frac{\partial}{\partial\nu}} \Delta u=0}$ on the boundary of a bounded convex domain ${\Omega \subset {\mathbb{R}}^n}$ with smooth boundary. This problem arises in the modeling of the evolution of a thin surface when exposed to molecular beam epitaxy. Correspondingly the physically most relevant spatial setting is obtained when n?=?2, but previous mathematical results appear to concentrate on the case n?=?1. In this work, it is proved that when n??? 3,??? ?? 0, ???>?0 and ${f \in L^\infty(\Omega)}$ satisfies ${{\int_\Omega} f \ge 0}$ , for each prescribed initial distribution ${u_0 \in L^\infty(\Omega)}$ fulfilling ${{\int_\Omega} u_0 \ge 0}$ , there exists at least one global weak solution ${u \in L^2_{loc}([0,\infty); W^{1,2}(\Omega))}$ satisfying ${{\int_\Omega} u(\cdot,t) \ge 0}$ for a.e. t?>?0, and moreover, it is shown that this solution can be obtained through a Rothe-type approximation scheme. Furthermore, under an additional smallness condition on??? and ${\|f\|_{L^\infty(\Omega)}}$ , it is shown that there exists a bounded set ${S\subset L^1(\Omega)}$ which is absorbing for ${(\star)}$ in the sense that for any such solution, we can pick T?>?0 such that ${e^{2\lambda u(\cdot,t)}\in S}$ for all t?>?T, provided that ?? is a ball and u 0 and f are radially symmetric with respect to x?=?0. This partially extends similar absorption results known in the spatially one-dimensional case. The techniques applied to derive appropriate compactness properties via a priori estimates include straightforward testing procedures which lead to integral inequalities involving, for instance, the functional ${{\int_\Omega} e^{2\lambda u}dx}$ , but also the use of a maximum principle for second-order elliptic equations.  相似文献   

8.
9.
10.
We consider regular oblique derivative problem in cylinder Q T ?=????× (0, T), ${\Omega\subset {\mathbb R}^n}$ for uniformly parabolic operator ${{{\mathfrak P}}=D_t- \sum_{i,j=1}^n a^{ij}(x)D_{ij}}$ with VMO principal coefficients. Its unique strong solvability is proved in Manuscr. Math. 203?C220 (2000), when ${{{\mathfrak P}}u\in L^p(Q_T)}$ , ${p\in(1,\infty)}$ . Our aim is to show that the solution belongs to the generalized Sobolev?CMorrey space ${W^{2,1}_{p,\omega}(Q_T)}$ , when ${{{\mathfrak P}}u\in L^{p,\omega} (Q_T)}$ , ${p\in (1, \infty)}$ , ${\omega(x,r):\,{\mathbb R}^{n+1}_+\to {\mathbb R}_+}$ . For this goal an a priori estimate is obtained relying on explicit representation formula for the solution. Analogous result holds also for the Cauchy?CDirichlet problem.  相似文献   

11.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

12.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

13.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

14.
In this paper we study, for given $p,~1<p<\infty $ , the boundary behaviour of non-negative $p$ -harmonic functions in the Heisenberg group $\mathbb{H }^n$ , i.e., we consider weak solutions to the non-linear and potentially degenerate partial differential equation $$\begin{aligned} \sum _{i=1}^{2n}X_i(|Xu|^{p-2}\,X_i u)=0 \end{aligned}$$ where the vector fields $X_1,\ldots ,X_{2n}$ form a basis for the space of left-invariant vector fields on $\mathbb{H }^n$ . In particular, we introduce a set of domains $\Omega \subset \mathbb{H }^n$ which we refer to as domains well-approximated by non-characteristic hyperplanes and in $\Omega $ we prove, for $2\le p<\infty $ , the boundary Harnack inequality as well as the Hölder continuity for ratios of positive $p$ -harmonic functions vanishing on a portion of $\partial \Omega $ .  相似文献   

15.
In this paper we investigate the regularity of solutions for the following degenerate partial differential equation $$\left \{\begin{array}{ll} -\Delta_p u + u = f \qquad {\rm in} \,\Omega,\\ \frac{\partial u}{\partial \nu} = 0 \qquad \qquad \,\,\,\,\,\,\,\,\,\, {\rm on} \,\partial \Omega, \end{array}\right.$$ when ${f \in L^q(\Omega), p > 2}$ and q ≥ 2. If u is a weak solution in ${W^{1, p}(\Omega)}$ , we obtain estimates for u in the Nikolskii space ${\mathcal{N}^{1+2/r,r}(\Omega)}$ , where r = q(p ? 2) + 2, in terms of the L q norm of f. In particular, due to imbedding theorems of Nikolskii spaces into Sobolev spaces, we conclude that ${\|u\|^r_{W^{1 + 2/r - \epsilon, r}(\Omega)} \leq C(\|f\|_{L^q(\Omega)}^q + \| f\|^{r}_{L^q(\Omega)} + \|f\|^{2r/p}_{L^q(\Omega)})}$ for every ${\epsilon > 0}$ sufficiently small. Moreover, we prove that the resolvent operator is continuous and compact in ${W^{1,r}(\Omega)}$ .  相似文献   

16.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

17.
We consider the following question: Given a connected open domain ${\Omega \subset \mathbb{R}^n}$ , suppose ${u, v : \Omega \rightarrow \mathbb{R}^n}$ with det ${(\nabla u) > 0}$ , det ${(\nabla v) > 0}$ a.e. are such that ${\nabla u^T(x)\nabla u(x) = \nabla v(x)^T \nabla v(x)}$ a.e. , does this imply a global relation of the form ${\nabla v(x) = R\nabla u(x)}$ a.e. in Ω where ${R \in SO(n)}$ ? If u, v are C 1 it is an exercise to see this true, if ${u, v\in W^{1,1}}$ we show this is false. In Theorem 1 we prove this question has a positive answer if ${v \in W^{1,1}}$ and ${u \in W^{1,n}}$ is a mapping of L p integrable dilatation for p > n ? 1. These conditions are sharp in two dimensions and this result represents a generalization of the corollary to Liouville’s theorem that states that the differential inclusion ${\nabla u \in SO(n)}$ can only be satisfied by an affine mapping. Liouville’s corollary for rotations has been generalized by Reshetnyak who proved convergence of gradients to a fixed rotation for any weakly converging sequence ${v_k \in W^{1,1}}$ for which $$\int \limits_{\Omega} {\rm dist}(\nabla v_k, SO(n))dz \rightarrow 0 \, {\rm as} \, k \rightarrow \infty.$$ Let S(·) denote the (multiplicative) symmetric part of a matrix. In Theorem 3 we prove an analogous result to Theorem 1 for any pair of weakly converging sequences ${v_k \in W^{1,p}}$ and ${u_k \in W^{1,\frac{p(n-1)}{p-1}}}$ (where ${p \in [1, n]}$ and the sequence (u k ) has its dilatation pointwise bounded above by an L r integrable function, rn ? 1) that satisfy ${\int_{\Omega} |S(\nabla u_k) - S(\nabla v_k)|^p dz \rightarrow 0}$ as k → ∞ and for which the sign of the det ${(\nabla v_k)}$ tends to 1 in L 1. This result contains Reshetnyak’s theorem as the special case (u k ) ≡ Id, p = 1.  相似文献   

18.
A classical result states that every lower bounded superharmonic function on ${\mathbb{R}^{2}}$ is constant. In this paper the following (stronger) one-circle version is proven. If ${f : \mathbb{R}^{2} \to (-\infty,\infty]}$ is lower semicontinuous, lim inf|x|→∞ f (x)/ ln |x| ≥ 0, and, for every ${x \in \mathbb{R}^{2}}$ , ${1/(2\pi) \int_0^{2\pi} f(x + r(x)e^{it}) \, dt \le f(x)}$ , where ${r : \mathbb{R}^{2} \to (0,\infty)}$ is continuous, ${{\rm sup}_{x \in \mathbb{R}^{2}} (r(x) - |x|) < \infty},$ , and ${{\rm inf}_{x \in \mathbb{R}^{2}} (r(x)-|x|)=-\infty}$ , then f is constant. Moreover, it is shown that, assuming rc| · | + M on ${\mathbb{R}^d}$ , d ≤ 2, and taking averages on ${\{y \in \mathbb{R}^{d} : |y-x| \le r(x)\}}$ , such a result of Liouville type holds for supermedian functions if and only if cc 0, where c 0 = 1, if d = 2, whereas 2.50 < c 0 < 2.51, if d = 1.  相似文献   

19.
20.
We investigate the asymptotic behavior of the entropy numbers of Besov classes BBΩp,θ(Sd 1)of generalized smoothness on the sphere inL q(Sd 1)for 1≤p,q,θ≤∞,and get their asymptotic orders.We also obtain the exact orders of entropy numbers of Sobolev classesBWr p(Sd 1)inL q(Sd 1)whenpand/orqis equal to 1 or∞.This provides the last piece as far as exact orders of entropy numbers ofBWr p(Sd 1)inL q(Sd 1)are concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号