首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fura-2 is one of the most used fluorophore for measuring intracellular calcium concentration ([Ca2+]i). In mouse bone marrow cell suspensions ATP produces a biphasic effect: till 1 mM, ATP produces increases in [Ca2+]i; from 1 mM on an increase is observed, that is followed by the decrease in the 340/380 nm ratio (R340/380). At high ATP (4 mM) concentration fura-2 leaked from loaded bone marrow cell suspensions. We observed that ATP decreases fluorescence in the absorption and excitation spectra of fura-2, consequently the emitted one is decreased including the isobestic point (360 nm). ATP analogs: BzATP, ATPyS and UTP, but not alphabetaATP, ADP or AMP, promote decrease of fluorescence in the isobestic point of fura-2. The physical/chemical process that reduces the absorption and excitation of fura-2 by ATP is unknown. The P2X7 inhibitors, Mg2+ (5 mM), OxATP (300 microM) and Brilliant Blue (100 nM), blocked the efflux of fura-2 and ATP-induced R340/380 decrease. The J774 cell line and mononuclear cells with a higher expression of P2X7 receptors show the same decrease in R340/380 as that induced by ATP. In the HL-60 cell line, myeloid cells and erythroblasts extracted from bone marrow, such effect does not occur. It is concluded that the use of the fluorescent Ca2+ indicator fura-2 does not allow the correct measurement of [Ca2+]i in these cells in the presence of a higher concentration of ATP which activated the P2X7 receptor.  相似文献   

2.
Spectroscopic studies of the biologically active compound 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole (FABT), have been performed. Absorption studies in the UV-Vis region for FABT in polar solvents, like water or ethanol, exhibit the domination of the enol form over its keto counterpart, with a broad absorption band centered around 340 nm. In non-polar solvents such as n-heptane or heavier alkanes the 340 nm absorption band disappears and an increase of the band related to the keto form (approximately 270 nm) is observed. Fluorescence spectra (with 270 nm and 340 nm excitation energies used) show a similar dependence: for FABT in 2-propanol a peak at about 400 nm dominates over that at 330 nm while in n-heptane this relation is reversed. The solvent dependent equilibrium between the keto and enol forms is further confirmed by FTIR and Raman spectroscopies. As can be expected, this equilibrium also shows some temperature dependences. We note that the changes between the two tautomeric forms of FABT are not related to the permanent dipole moment of the solvent but rather to its dipole polarizability.  相似文献   

3.
Gadolinium scandium oxide (Gd-scandate, GdScO3) thin films were grown by atomic layer deposition (ALD) from β-diketonate precursors M(thd)3 (M=Gd, Sc; thd=2,2,6,6-tetramethyl-3,5-heptanedionato) and ozone. The deposition parameters were optimized to produce films with the stoichiometric 1:1 metal ratio and a series of samples with nominal thicknesses of 5, 10, 15, and 20 nm were prepared. At 300 °C the metal precursor pulsing ratio Gd:Sc=5:6 yielded amorphous stoichiometric films and a growth rate of 0.21 Å/cycle. The films stayed amorphous up to 900 °C. The surface was probed with an AFM and the rms roughness was found to be 0.3 nm for the 5–20 nm thick films. The electrical properties of the as-deposited films proved to be very promising, with a dielectric constant of ~22 and leakage current density of 340 μA/cm2, measured at -2 V.  相似文献   

4.
Using front-surface fluorimetry with fura-2-loaded smooth muscle strips, simultaneous registration of the cytosolic calcium concentration ([Ca2+]i) changes and tension development was done under the action of 40 mM KCl and the myotropic peptide 10–6 M angiotensin II. The strips were mounted vertically, connected to a force transducer that keeps a basal isometric tension of 0.5 g, and maintained in a bathing solution oxygenated at 37°C. The fiber-optic platform FluoroMax-2 accessory 1950F was used to do the remote sensing for the samples. Light from the excitation spectrometer (FluoroMax-2), alternating between 340 and 380 nm, was focused onto the fiber-optic bundle and directed to the smooth muscle strip. The fluorescence (505 nm) was collected and redirected to the emission port of the fluorimeter FluoroMax-2. The ratiometric method (R340/380) was used as an index of [Ca2+]i change during smooth muscle contraction. All data, R340/380 and tension, were recorded using a computerized data acquisition system: Soft & Solution and GRAMS/386 of Galatic Industries Corporation.  相似文献   

5.
In this paper, we present a diode-pumped continuous-wave tunable and Q-switched Tm:SSO laser with a semiconductor saturable absorber mirror. In continuous-wave regime, a maximum output power of 340 mW at 1,980.7 nm was obtained. With a quartz plate, wavelength-tunable continuous-wave operation was achieved from 1,922 to 2,020 nm. In Q-switched regime, a maximum output pulse energy of 14.7 μJ under a repetition rate of 800 Hz and a minimum pulse width of 7.6 μs corresponding to a repetition rate of 8.8 kHz around 1,974.4 nm were obtained from the passively Q-switched Tm:SSO laser.  相似文献   

6.
We present simulations for a design of a high-energy single-stage mid-IR difference frequency generation adapted to a two-color Ti:sapphire amplifier system. The optimized mixing process is based on chirped pulse difference frequency generation (CP-DFG), allowing for a higher conversion efficiency and reduced two-photon absorption losses. The numerical start-to-end simulations include stretching, chirped pulse difference frequency generation and pulse compression. Realistic design parameters for commercially available nonlinear crystals (GaSe, AgGaS2, LiInSe2, LiGaSe2) are considered. Compared with conventional unchirped DFG directly pumped by Ti:sapphire technology, we predict a threefold increase in the quantum efficiency. Our CP-DFG scheme provides up to 340 μJ pulse energy directly at 7.2 μm when pumped with 8 mJ and supports a bandwidth of up to 350 nm. The resulting 240 fs mid-IR pulses are inherently phase stable.  相似文献   

7.
《Composite Interfaces》2013,20(3):217-232
Zinc oxide (ZnO) has been successfully synthesized by an anodization method, and it has been fabricated through anodization method with different concentration of zinc nitrate. The element composition, surface inspection, structural, and morphological features of the products are depend on the concentration of zinc nitrate. At lower concentration (0.01M), SEM image shows ZnO nanowires with average width of about 30 and 50 nm. With increase in the concentration of zinc nitrate from 0.01 to 0.05 M, the nanowires change into the nanosheets with average width of about 0.5 and 1.5 μm. For samples (0.1 M) exhibits nanodots, morphology was composed of hundreds of nanosheets with thickness is about 90 nm on average. When the concentration increases to 0.2 M, the nanodots trench became bigger with diameter about 1.2–2.0 μm. When the concentration of zinc nitrate is 0.3 M, the average diameter of nanodots is about 2–2.5 μm. The trench of nanosheets becomes thinner and shorter, but the number of nanosheets increases with diameter 20–50 nm. The formation of nanowires, nanodots, and nanosheets nanostructures is also believed to result from actions on concentration of zinc nitrate as an aquas medium. The EDX result shows the atomic percentage (at.%) of the oxygen increased when the concentration of zinc nitrate increased. The pattern of EDX indicates that the ZnO nanostructures are composed of Zn, O, and Al. They represent Al composition in the sample because the anode using the aluminum rod during experiment.  相似文献   

8.
Glyoxal, a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. Considering the significance of protein modification by glyoxal-derived AGEs, we investigated the in vitro effect of glyoxal (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) after incubation for one week at 25 °C. Glyoxal-treated Mb exhibited increased absorbance around the Soret region, decreased α-helicity and thermal stability compared to control Mb. Intrinsic fluorescence spectrum of the treated Mb showed an additional signal in the 400–500 nm region on excitation at 280 nm that was absent in control Mb. When excited at 335 nm, the glyoxal-treated sample gave a strong fluorescence indicating AGE formation. Mass spectrometric studies revealed formation of glyoxal-derived fluorescent AGE adduct pentosidine between Lys-145 and Arg-139 residues of Mb. Other than pentosidine, additional AGE adducts, namely, carboxymethyllysine at Lys-133, hydroimidazolone at Arg-31 and pyrrolidone-carboxymethyllysine at Lys-145 were also detected. Lys-145 was thus found to contain two different types of AGE adducts, indicating the heterogeneous nature of in vitro glycation reaction. AGE-induced protein modifications might be associated with complications in disease conditions.  相似文献   

9.
The three-dimensional photoluminescence emissions between 380 and 800 nm of the dentritic agate with white body color from the Dereyalak-?nönü-Eski?ehir (Turkey) region were obtained at the temperatures between 250 and 340 K under 366 nm excitation. The most advantage of three-dimensional photoluminescence graphic in a silica structure is to demonstrate clearly all vibronic structures through temperature increasing on the spectra. Hence, photoluminescence response from the gem-quality material was discussed in relation to chemical impurities of trivalent rare earth elements.

In the photoluminescence spectra, two strong and many weaker emission bands became clear at the lower temperature (250 K) conditions. First strong one is the purple band, and the highest emission peak is observed at 394 nm. Second strong one is the red band, and the highest emission peak is observed at 717 nm. The half-width of these main bands is approximately 17–19 nm, and such band's combination is typical for trivalent rare earth elements. Chemical analyses in this study show the abundances of many rare earth elements in the material. In order of abundance, they are yttrium (845 ppm), gadolinium (238 ppm), lutetium (196 ppm), dysprosium (45 ppm), neodymium (41 ppm), promethium (34 ppm), europium (18 ppm), and scandium (3 ppm). However, the two strong emission bands are, of course, due to yttrium and gadolinium ions, respectively.

As a result, the intensities of these bands gradually decreased forming a sequence until the temperature of 280 K. Hence, the photoluminescence of the Turkish dentritic agates does not exist at higher temperatures, mainly because of high iron (40.000 ppm) abundance.  相似文献   

10.
In this work, water dispersible fluorescent carbon nanocrystals (NCs) were synthesized by a simple, green and low cost hydrothermal method using Syzygium cumini (jamun) as a carbon source at 180 °C for 6 h. The average size of carbon NCs was found to be 2.1 ± 0.5 nm and shown bright blue fluorescence when excited at 365 nm under UV lamp. The carbon NCs were characterized by spectroscopic (UV-visible and fluorescence, Fourier transform infrared and dynamic light scattering) and high resolution transmission electron microscopic techniques. The quantum yield of carbon NCs was found to be ~5.9 % at 438 nm emission wavelength when excited at 360 nm. It was noticed that none of the metal ions quenched the fluorescence intensity of carbon NCs at 438 nm except for Fe3+, indicating the formation of Fe3+ ion-carbon NCs complexes. The linear range was observed in the concentration range of 0.01–100 μM with the corresponding detection limits of 0.001 μM, respectively. Furthermore, the carbon NCs were used as probes for imaging of fungal (Fusarium avenaceum) cells.  相似文献   

11.
A highly sensitive, simple and rapid stability-indicating spectrofluorimetric method was developed for the determination of metolazone (MET) and xipamide (XPM) in their tablets. The proposed method is based on the measurement of the native fluorescence of MET in methanol at 437 nm after excitation at 238 nm and XPM in alkaline methanolic solution at 400 nm after excitation at 255 nm. The fluorescence–concentration plots were rectilinear over the range of 2.0– 20.0 ng/mL for MET and 0.2– 2.0 μg/mL for XPM, with lower detection limits (LOD) of 0.35 ng/mL and 0.02 μg/mL and a lower quantification limit (LOQ) of 1.05 ng/mL and 0.07 μg/mL for MET and XPM, respectively. The method was successfully applied to the analysis of MET and XPM in their commercial tablets and the results were in good agreement with those obtained using the official and comparison methods, respectively. Furthermore, content uniformity testing of the studied pharmaceutical tablets was also conducted. The application of the proposed method was extended to stability studies of MET and XPM after exposure to different forced degradation conditions, such as acidic, alkaline, oxidative and photolytic degradation conditions, according to ICH Guidelines. Moreover, the method was utilized to investigate the kinetics of the alkaline, acidic and photolytic degradation of MET. The apparent first-order rate constants and half-life times were calculated. Proposals for the degradation pathways for both MET and XPM were postulated.  相似文献   

12.
Two-photon laser-induced fluorescence (LIF) of ammonia (NH3) with excitation of the C′-X transition at 304.8 nm and fluorescence detection in the 565 nm C′-A band has been investigated, targeting combustion diagnostics. The impact of laser irradiance, temperature, and pressure has been studied, and simulation of NH3-spectra, fitted to experimental data, facilitated interpretation of the results. The LIF-signal showed quadratic dependence on laser irradiance up to 2 GW/cm2. Stimulated emission, resulting in loss of excited molecules, is induced above 10 GW/cm2, i.e., above irradiances attainable for LIF imaging. Maximum LIF-signal was obtained for excitation at the 304.8 nm bandhead; however, lower temperature sensitivity over the range 400–700 K can be obtained probing lines around 304.9 nm. A decrease in fluorescence signal was observed with pressure up to 5 bar absolute and attributed to collisional quenching. A detection limit of 800 ppm, at signal-to-noise ratio 1.5, was identified for single-shot LIF imaging over an area of centimeter scale, whereas for single-point measurements, the technique shows potential for sub-ppm detection. Moreover, high-quality NH3-imaging has been achieved in laminar and turbulent premixed flames. Altogether, two-photon fluorescence provides a useful tool for imaging NH3-detection in combustion diagnostics.  相似文献   

13.
Isomerization of trans-stilbenes is known to be induced by light. The two isomers have distinct absorption, fluorescence excitation and emission spectra. Resveratrol, 3,4',5-trihydroxystilbene, is a member of the stilbene family. The interest of the scientific community in resveratrol has increased over the last years due to its biomedical properties. Whereas there is a growing confidence that trans-resveratrol is non-toxic, very little is known about the pharmacology of cis-resveratrol. Of this very reason there is considerable interest in knowing the energetics of the trans-cis conversion. Cis-resveratrol is characterized by a large fluorescence quantum yield when compared to trans-resveratrol. In the present paper we report a detailed analysis of the spectral changes induced in trans-resveratrol upon 260?nm excitation for different time periods. Spectral changes have been monitored with UV-visible absorption and steady-state fluorescence spectroscopy at pH?4 at 20, 25, 30, 35, 40, 45 and 50?°C. Continuous 260?nm excitation induces a blue shift in the absorption and fluorescence excitation spectra of resveratrol and a 14?nm blue shift in its fluorescence emission. The photoisomerization yield is reported as a function of 260?nm excitation time. 330?min continuous excitation led to ~60% isomerization yield. The kinetics of trans-cis isomerization has been monitored following the increase in fluorescence quantum yield upon continuous 260?nm excitation of trans-resveratrol. The study was carried out at the above mentioned temperatures in order to obtain the Arrhenius activation energy of photoisomerization. Activation energy and pre-exponential factor were 3.7?±?0.3?kcal.mol(-1) and 10.6?±?1.6 s(-1), respectively. The activation energy is comparable with previously reported values for the photoisomerization of other stilbenes.  相似文献   

14.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of Terbinafine HCl (TRH) and linezolid (LNZ) in their pharmaceutical formulations. The proposed method is based on measuring the native fluorescence of the studied drugs in water at 336 nm after excitation at 275 nm for TRH and 375 nm after excitation at 254 nm for LNZ. The fluorescence–concentration plots were rectilinear over the range of 0.02–0.15 μg/mL for TRH and 0.5–5.0 μg/mL for LNZ. With lower detection limits of 3.0 and 110.0 ng/mL and a lower quantification limit of 9.0 and 320.0 ng/mL for TRH and LNZ, respectively. The method was successfully applied to the analysis of TRH in its commercial tablets, cream, gel and spray formulations and the results were in good agreement with those obtained with the official method. In addition the method was also applied to the analysis of LNZ in its capsule and I.V solution and the results were in good agreement with those obtained with the comparison method. The effect of sensitizers was studied. The method was extended to the determination of the studied drugs in spiked human plasma and the results were satisfactory.  相似文献   

15.
The aim of this study is to investigate the autofluorescence spectral characteristics of normal and cancerous nasopharyngeal tissues and to extract the potential spectral features for diagnosis of nasopharyngeal carcinoma (NPC). The autofluorescence excitation-emission matrix (EEM) of 37 normal and 34 cancerous nasopharyngeal tissues were recorded by a FLS920 spectrofluorimeter system in vitro. Based on the alteration in proportions of collagen and NAD(P)H, the integrated fluorescence intensity of I 455 ± 10 nm and I 380 ± 10 nm were used to calculated the ratio values by a two-peak ratio algorithm to diagnose NPC tissues at 340 nm excited. Furthermore by applying the receiver operating characteristic curve (ROC), the 340 nm excitation yielded an average sensitivity and specificity of 88.2 and 91.9%, respectively. These results may have practical implications for diagnosis of NPC.  相似文献   

16.
We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250–310 nm), two-photon (570–620 nm) and three-photon (750–930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565–580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at ?60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos6 θ to cos2 θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.  相似文献   

17.
The photophysical properties of the three 1,3,4-oxadiazole derivatives containing fluorene (Ox-FL); fluorene and phenolphtaleine (Ox-FL-FF); or fluorene and bisphenol A (Ox-FL-BPA) moieties in the main chain were investigated by the fluorescence and absorption spectroscopy in different solvents and in the solid state. The electronic absorption spectra included a strong absorption band located in the 270–395 nm region, with a maxima around at 302 nm. The fluorescence excitation spectra were also characterized by one broad band, appearing in the wavelength range of 220–340 nm. All samples displayed the emission bands around 356–373 nm and exhibit high quantum yields ranged from 31.61 to 90.77%, in chloroform solution. The sensitivity of the emission spectra on medium characteristics (polarity, acidity and basicity) were evaluated by using the Catalan solvent scale and the fluorescence titration with a dilute acid solution.  相似文献   

18.
Metal-hydroxyquinoline-halogen (MqX, M?=?Cd, Cu; q?=?8-hydroxyquinoline; X?=?Cl, Br, I) nanowires are synthesized via a sonochemical-assisted method. The elemental analysis (EA), inductively coupled plasma-optical emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS) support an M/q/X ratio of 1:1:1. The electron microscope images reveal a typical CdqX and CuqX nanowire diameter of 30–50 nm and a nanowire length of 400–600 nm. In addition, the synthesis of the MqX nanowires is only observed when there is an excess of halide ions (X/q molar ratio of 3 or greater). This halide deficiency results in the formation of micrometer-sized Mq2 sheets. We demonstrated the conversion of the MqX nanowires to Mq2 micro-sheets in an ultrasonic bath of 1 M 8-Hq ethanol solutions (50%, w/w) at 50 °C for 2 h, but not vice versa. The MqX nanowires exhibited excellent properties for photoluminescence, electrochemiluminescence (ECL), and photoelectrochemistry (PEC). The CdqBr and CdqI nanowires were coated onto a glass carbon and a fluorine-doped tin oxide glass electrode to develop the above ECL and PEC methods for the detection of H2O2 and Cu2+, respectively. In the range of 2 to 14 μM, the ECL intensity of the CdqBr nanowires was inversely proportional to the concentration of H2O2 with a detection limit of 0.26 μM. For Cu2+ sensing, the photocurrent of the CdqI nanowires exhibited a linear response to Cu2+ over the range of 2 to 16 μM of which a detection limit of 0.2 μM was observed.  相似文献   

19.
In the present work, we demonstrate the fabrication technique of highly translucent layers of nanoparticulated (~50 nm) LuPO4:Eu phosphor, present their basic luminescent properties and give results of their performance in a planar imaging system coupled to a CMOS photodetector. For comparison, the imaging performance of an opaque Gd2O2S:Eu phosphor screen prepared by sedimentation is also shown. The X-ray detection parameters as well as the luminescence efficiency of the investigated films were discussed. Results show that the in-line transmittance at ~600–700 nm, in the range of the phosphor luminescence, varies with respect to the thickness of the films from 40 to 50 % for a film of 67 μm thick to 4–12 % when the thickness increases to 460 μm. Yet, X-ray detection parameters get enhanced as the thickness of the films increases. Those results affect the luminescence efficiency curves of the films under poly-energetic X-ray radiation of various tube energies. The normalized noise power spectrum values were found similar for LuPO4:Eu films and a phosphor screen made using commercial Gd2O2S:Eu powder. The detective quantum efficiency of our films is clearly lower compared to the Gd2O2S:Eu screen from 2 to 10 cycles mm?1 frequency range while the modulation transfer function is lower from 0 to 5.5 cycles mm?1 frequency range. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains and thus without sacrificing their translucent character.  相似文献   

20.
The electrochemical detection of dopaminergic agonist drug pramipexole dihydrochloride monohydrate (PPX) has been investigated by cyclic voltammetric (CV) and amperometric it techniques at functionalized multi-walled carbon nanotubes-modified glassy carbon electrode. For the first time, a sensitive and rapid electrochemical method was developed for the determination of PPX. The surface morphological characteristics of the proposed electrode have been studied by using transmission electron microscopy (TEM); further, electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) have been employed. PPX shows an irreversible anodic peak, which may be ascribed to the oxidation of the –NH groups of PPX. The proposed method was showing good sensitivity of 0.993 μA μM?1 cm?2 with a linear range of 5 to 340 μM by amperometric it and CV technique shows a linear range of 12.5 to 313 μM with a sensitivity of 1.92 μA μM?1 cm?2. The recovery of PPX from blood serum samples was found 100.6 and 98.9 %, respectively. Furthermore, the proposed method has been demonstrated for the determination of PPX in commercially available pharmaceutical samples and good agreement of results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号