首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The standard (p(o) = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of four liquids: 2-ethylpyridine, 4-ethylpyridine, ethylpyrazine and 2,3-diethylpyrazine were measured by static bomb calorimetry in an oxygen atmosphere. The values of the standard molar enthalpies of vaporization, at T = 298.15 K, were obtained by Calvet microcalorimetry, allowing the calculation of the standard molar enthalpies of formation of the compounds, in the gas phase, at T= 298.15 K: 2-ethylpyridine (79.4 +/- 2.6) kJ mol(-1); 4-ethylpyridine (81.0 +/- 3.4) kJ mol(-1); ethylpyrazine (146.9 +/- 2.8) kJ mol(-1); and 2,3-diethylpyrazine (80.2 +/- 2.9) kJ mol(-1). The most stable geometries of all ethylpyridine and ethylpyrazine isomers were obtained using the density functional theory with the B3LYP functional and two basis sets: 6-31G* and 6-311G**. These calculations were then used to obtain estimates of the enthalpies of formation of all isomers, including those not experimentally studied, through the use of isodesmic reactions. A discussion of the relationship between structure and energetics of the isomers is also presented.  相似文献   

5.
6.
A calorimetric method was applied at 25 °C to measure the enthalpies of dissolution of cyclohexane, heptane, and decane in the methanol-n-butanol mixed solvent and hexadecane in mixtures of methanol withn-, iso-, andtert-butyl alcohols. The standard enthalpies of dissolution of alkanes were determined. It was shown that the equation proposed in the literature for calculation of the enthalpies of dissolution of alkanes in mixtures with nonspecific intermolecular solvent-solvent interactions describes satisfactorily the enthalpies of dissolution of alkanes in mixtures of methanol withn- andiso-butyl alcohols. It was suggested that there is no preferential solvation of alkanes by one of the mixed solvent components in the MeOH−BunOH and MeOH−BuiOH mixtures; in the MeOH−ButOH system, the composition of alkane solvation shell differs slightly from the solvent composition in the bulk. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 271–274, February, 1999.  相似文献   

7.
8.
The standard (p° = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of 5-, 6- and 7-methoxy-α-tetralone were measured by static bomb calorimetry. The values of the standard molar enthalpies of sublimation were obtained by Calvet microcalorimetry and corrected to T = 298.15 K. Combining these results, the standard molar enthalpies of formation of the compounds, in the gas phase, at T = 298.15 K, have been calculated, 5-methoxy-α-tetralone -(244.8 ± 1.9) kJ · mol?1, 6-methoxy-α-tetralone ?(243.0 ± 2.8) kJ · mol?1 and 7-methoxy-α-tetralone ?(242.3 ± 2.6) kJ · mol?1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed for the compounds. The agreement between experiment and theory gives confidence to estimate the enthalpy of formation of 8-methoxy-α-tetralone. Similar calculations were done for the 5-, 6-, 7- and 8-methoxy-β-tetralone, for which experimental work was not done.  相似文献   

9.
10.
The standard (p 0=0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T-298.15 K, for 2,5-dimethylpyrazine (2,5-DMePz) and for the two dimethylpyrazine-N,N′-dioxide derivatives, 2,3-dimethylpyrazine-1,4-dioxide (2,3-DMePzDO) and 2,5-dimethylpyrazine-1,4-dioxide (2,5-DMePzDO), were derived from the measurements of standard massic energies of combustion, using a static bomb calorimeter, and from the standard molar enthalpies of vaporization or sublimation, measured by Calvet microcalorimetry. The mean values for the molar dissociation enthalpy of the nitrogen-oxygen bonds, 〈DH m0〉(N-O), were derived for both N,N′-dioxide compounds. These values are discussed in terms of the molecular structure of the two N,N′-dioxide derivatives and compared with 〈DH m0〉(N-O) values previously obtained for other N-oxide derivatives.  相似文献   

11.
The thermochemical study of cubane-1,4-dicarboxylic acid (1), diethyl cubane-1,4-dicarboxylate (2), diisopropyl cubane-1,4-dicarboxylate (3), and bis(2-fluoro-2,2-dinitro)ethyl cubane-1,4-dicarboxylate (4) was performed. The standard enthalpies of combustion (c H°) and formation (f H°) of these compounds were estimated using the method of combustion in a calorimetric bomb in an oxygen atmosphere. Using the additive group method, calculated values for f H° of these substances which agreed satisfactorily with the experimental ones were obtained. The strain energies (E s) of the cubic structure of derivatives1–4 were calculated. It was concluded thatE s did not change on substitution of hydrogen atoms in cubane for various functional groups and was equal toE s of the structure of cubane itself. The reliability of the single published value of f H° in the cubane crystal state, 541.8 kJ mol–1 (129.5 kcal mol–1), was confirmed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2471–2473, October, 1996.  相似文献   

12.
The standard (p 0 = 0.1 MPa) molar enthalpies of formation for the liquid 2,3-dimethylpyrazine and trimethylpyrazine and the crystalline 2,3-dimethylquinoxaline and tetramethylpyrazine were derived from the standard molar enthalpies of combustion, in oxygen, atT=298.15 K, measured by static-bomb combustion calorimetry. The standard molar enthalpies of vaporization or of sublimation for the same compounds were determined by Calvet microcalorimetry. Ab initio full geometry optimization at the 3-21G and 6-31G* levels were also performed for all the methylpyrazine isomers. MP2/RHF/3-21G//3-21G and DFT energies were also calculated for all the methylpyrazine isomers, thus allowing us to estimate their isodesmic resonance energies.  相似文献   

13.
The standard (p° = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloronitrobenzene isomers, in the crystalline state, at T = 298.15 K, were derived from the standard (p° = 0.1 MPa) massic energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of sublimation of the isomers, at T = 298.15 K, were obtained by high temperature Calvet microcalorimetry.  相似文献   

14.
氨基酸是人体内蛋白质的结构单元,锌是生命体中必需的微量元素之一,在生物体内参与各种重要的生化过程,氨基酸与锌的络合使氨基酸锌具有良好的化学稳定性与热稳定性,具有抗干扰与缓解矿物质之间的拮抗作用、入血快、生物利用率高等显著优点,氨基酸锌作为添加剂在药物、食品和化  相似文献   

15.
16.
17.
The mean values of the standard massic energy of combustion of caffeine in phase I (or alpha) and in phase II (or beta) measured by static-bomb combustion calorimetry in oxygen, at T = 298.15 K, are Δcu° (C8H10O2N4, I) = −(21823.27 ± 0.68) J · g−1 and Δcu° (C8H10O2N4, II) = −(21799.96 ± 1.08) J · g−1, respectively.The standard (p° = 0.1 MPa) molar enthalpy of formation in condensed phase for each form was derived from the corresponding standard molar enthalpies of combustion as, and .The difference between the standard enthalpy of formation of the two polymorphs in condensed phase was also evaluated by using reaction-solution calorimetry. The obtained result, 2.04 ± 0.25 kJ · mol−1, is in agreement, within the uncertainty, with the difference between the molar enthalpies of formation obtained from combustion experiments (4.5 ± 3.2) kJ · mol−1, which can be considered as an internal test for consistency of the results.A value for the standard enthalpy of formation of caffeine in the gaseous state was proposed: , estimated from the values of the standard enthalpies of formation of both crystalline forms obtained in this work, and the data on standard enthalpies of sublimation collected from the literature.  相似文献   

18.
The standard enthalpies of combustion c H o of aliphatic diacetates1 and aromatic diacetates2 were measured calorimetrically. The enthalpies of vaporization vap H o or sublimation sub H o of1 and2 were obtained from the temperature function of the vapor pressure measured in a flow system. From f H o(g) of1 and2 new values of group increments for the estimation of standard enthalpies of formation of these classes of compounds were derived. The geminal interaction energy between the geminal acyloxy groups shows no anomeric stabilization.Geminal Substituent Effects, Part 12, for part 11 see Ref. 7.  相似文献   

19.
20.
The crystalline and gas phase enthalpy of formation of 5-cyano-7H-dibenzo-[a,c]-cyclohepten-6-amine (1) (142.0 ± 11.6 and 264 ± 20 kJ mol?1, respectively) are reported. The sublimation enthalpy at T = 298.15 K for this compound was evaluated by combining the fusion enthalpy from DSC measurements adjusted to 298 K with estimated vaporization enthalpy. The experimental enthalpy of formation is discussed in relationship with values calculated at the G3(MP2)//B3LYP level of quantum chemical theory and by means of group additivity. The crystal structure of this compound was determined by X-ray crystallography and shown to exist entirely in the cyanoenamine form 1, i.e. not the tautomeric α-cyanoimine 2.  相似文献   

Empty Cell-ΔcUm°(cr)/(kJ · mol?1)-ΔcHm°(cr)/(kJ · mol?1)-ΔcrgHm°/(kJ · mol?1)
2-Chloronitrobenzene2939.5 ± 0.718.7 ± 1.080.9 ± 1.5
3-Chloronitrobenzene2915.8 ± 0.842.4 ± 1.282.5 ± 1.5
4-Chloronitrobenzene2921.7 ± 1.436.5 ± 1.676.2 ± 2.1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号