首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we consider the nonselfadjoint (dissipative) Schrodinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrodinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrodinger boundary value problem are given.  相似文献   

2.
In this paper we consider the nonselfadjoint (dissipative) Schr(o)dinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator,and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schr(o)dinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schr(o)dinger boundary value problem are given.  相似文献   

3.
In this paper we consider the nonselfadjoint (dissipative) Schrödinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrödinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrödinger boundary value problem are given.  相似文献   

4.
5.
Maximal dissipative Schrödinger operators are studied in L 2((–,);E) (dimE=n<) that the extensions of a minimal symmetric operator with defect index (n,n) (in limit-circle case at – and limit point-case at ). We construct a selfadjoint dilation of a dissipative operator, carry out spectral analysis of a dilation, use the Lax–Phillips scattering theory, and find the scattering matrix of a dilation. We construct a functional model of the dissipative operator, determine its characteristic function in terms of the Titchmarsh–Weyl function of selfadjoint operator and investigate its analytic properties. Finally, we prove a theorem on completeness of the eigenvectors and associated vectors of a dissipative Schrödinger operators.  相似文献   

6.
7.
Dissipative singular Sturm–Liouville operators are studied in the Hilbert space Lw2[a,b) (–<a<b), that the extensions of a minimal symmetric operator in Weyls limit-point case. We construct a selfadjoint dilation of the dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of the dilation. We also construct a functional model of the dissipative operator and define its characteristic function in terms of the Titchmarsh–Weyl function of a selfadjoint operator. Finally, in the case when the Titchmarsh–Weyl function of the selfadjoint operator is a meromorphic in complex plane, we prove theorems on completeness of the system of eigenfunctions and associated functions of the dissipative Sturm–Liouville operators. Mathematics Subject Classifications (2000) 47A20, 47A40, 47A45, 34B20, 34B44, 34L10.  相似文献   

8.
In the Hilbert space , we consider nonselfadjoint singular Sturm-Liouville boundary value problem (with two singular end points a and b) in limit-circle cases at a and b, and with a spectral parameter in the boundary condition. The approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We also construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Sturm-Liouville equation. On the basis of the results obtained regarding the theory of the characteristic function, we prove theorems on completeness of the system of eigenvectors and associated vectors of the maximal dissipative operator and Sturm-Liouville boundary value problem.  相似文献   

9.
In this paper, we construct a space of boundary values for minimal symmetric 1D Hamiltonian operator with defect index (1,1) (in limit‐point case at a(b) and limit‐circle case at b(a)) acting in the Hilbert space In terms of boundary conditions at a and b, all maximal dissipative, accumulative, and self‐adjoint extensions of the symmetric operator are given. Two classes of dissipative operators are studied. They are called “dissipative at a” and “dissipative at b.” For 2 cases, a self‐adjoint dilation of dissipative operator and its incoming and outgoing spectral representations are constructed. These constructions allow us to establish the scattering matrix of dilation and a functional model of the dissipative operator. Further, we define the characteristic function of the dissipative operators in terms of the Weyl‐Titchmarsh function of the corresponding self‐adjoint operator. Finally, we prove theorems on completeness of the system of root vectors of the dissipative operators.  相似文献   

10.
11.
12.
In this paper, we consider the symmetric q-Dirac operator. We describe dissipative, accumulative, self-adjoint and the other extensions of such operators with general boundary conditions. We construct a self-adjoint dilation of dissipative operator. Hence, we determine the scattering matrix of dilation. Later, we construct a functional model of this operator and define its characteristic function. Finally, we prove that all root vectors of this operator are complete.  相似文献   

13.
In this paper, we study a nonself-adjoint singular 1D Hamiltonian (or Dirac type) system in the limit-circle case, with a spectral parameter in the boundary condition. Our approach depends on the use of the maximal dissipative operator whose spectral analysis is adequate for the boundary value problem. We construct a self-adjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations so that we can determine the scattering matrix of dilation. Moreover, we construct a functional model of the dissipative operator and specify its characteristic function using the solutions of the corresponding Hamiltonian system. Based on the results obtained by the theory of the characteristic function, we prove theorems on completeness of the system of eigenvectors and associated vectors of the dissipative operator and Hamiltonian system.  相似文献   

14.
15.
Dissipative Schrödinger operators with a matrix potential are studied in L2((0,∞);E)(dimE=n<∞) which are extension of a minimal symmetric operator L0 with defect index (n,n). A selfadjoint dilation of a dissipative operator is constructed, using the Lax-Phillips scattering theory, the spectral analysis of a dilation is carried out, and the scattering matrix of a dilation is founded. A functional model of the dissipative operator is constructed and its characteristic function's analytic properties are determined, theorems on the completeness of eigenvectors and associated vectors of a dissipative Schrödinger operator are proved.  相似文献   

16.
17.
In this study, maximal dissipative second‐order dynamic operators on semi‐infinite time scale are studied in the Hilbert space , that the extensions of a minimal symmetric operator in limit‐point case. We construct a self‐adjoint dilation of the dissipative operator together with its incoming and outgoing spectral representations so that we can determine the scattering function of the dilation as stated in the scheme of Lax‐Phillips. Moreover, we construct a functional model of the dissipative operator and identify its characteristic function in terms of the Weyl‐Titchmarsh function of a self‐adjoint second‐order dynamic operator. Finally, we prove the theorems on completeness of the system of root functions of the dissipative and accumulative dynamic operators.  相似文献   

18.
We construct a selfadjoint Akhiezer integral operator S on L 2(?1, 1) with the spectrum {?1; 0; 1} and the property that every function φ(S) that is not a multiple of S fails to be an Akhiezer integral operator.  相似文献   

19.
In this paper, we consider the one‐dimensional Schrödinger operator on bounded time scales. We construct a space of boundary values of the minimal operator and describe all maximal dissipative, maximal accretive, self‐adjoint, and other extensions of the dissipative Schrödinger operators in terms of boundary conditions. In particular, using Lidskii's theorem, we prove a theorem on completeness of the system of root vectors of the dissipative Schrödinger operators on bounded time scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
We consider a class of non‐selfadjoint operators generated by the equation and the boundary conditions, which govern small vibrations of an ideal filament with non‐conservative boundary conditions at one end and a heavy load at the other end. The filament has a non‐constant density and is subject to a viscous damping with a non‐constant damping coefficient. The boundary conditions contain two arbitrary complex parameters. In our previous paper (Mathematical Methods in the Applied Sciences 2001; 24 (15) : 1139–1169), we have derived the asymptotic approximations for the eigenvalues and eigenfunctions of the aforementioned non‐selfadjoint operators when the boundary parameters were arbitrary complex numbers except for one specific value of one of the parameters. We call this value the critical value of the boundary parameter. It has been shown (in Mathematical Methods in the Applied Sciences 2001; 24 (15) : 1139–1169) that the entire set of the eigenvalues is located in a strip parallel to the real axis. The latter property is crucial for the proof of the fact that the set of the root vectors of the operator forms a Riesz basis in the state space of the system. In the present paper, we derive the asymptotics of the spectrum exactly in the case of the critical value of the boundary parameter. We show that in this case, the asymptotics of the eigenvalues is totally different, i.e. both the imaginary and real parts of eigenvalues tend to ∞as the number of an eigenvalue increases. We will show in our next paper, that as an indirect consequence of such a behaviour of the eigenvalues, the set of the root vectors of the corresponding operator is not uniformly minimal (let alone the Riesz basis property). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号