首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lehh ≧ 2, and let ?=(B 1, …,B h ), whereB 1 ? N={1, 2, 3, …} fori=1, …,h. Denote by g?(n) the number of representations ofn in the formn=b 1b h , whereb i B i . If v (n) > 0 for alln >n 0, then ? is anasymptotic multiplicative system of order h. The setB is anasymptotic multiplicative basis of order h ifn=b 1b n is solvable withb i B for alln >n 0. Denote byg(n) the number of such representations ofn. LetM(h) be the set of all pairs (s, t), wheres=lim g? (n) andt=lim g? (n) for some multiplicative system ? of orderh. It is proved that {fx129-1} In particular, it follows thats ≧ 2 impliest=∞. A corollary is a theorem of Erdös that ifB is a multiplicative basis of orderh ≧ 2, then lim g? g(n)=∞. Similar results are obtained for asymptotic union bases of finite subsets of N and for asymptotic least common multiple bases of integers.  相似文献   

2.
A proof is given for the existence and uniqueness of a correspondence between two pairs of sequences {a},{b} and {ω},{μ}, satisfying bi>0 for i=1,…,n?1 and ω11<?<μn?1n, under which the symmetric Jacobi matrices J(n,a,b) and J(n?1,a,b) have eigenvalues {ω} and {μ} respectively. Here J(m,a,b) is symmetric and tridiagonal with diagonal elements ai (i=1,…,m) and off diagonal elements bi (i=1,…,m?1). A new concise proof is given for the known uniqueness result. The existence result is new.  相似文献   

3.
Let [n] = {1, 2, …, n}. Suppose we have k linear orderings on [n], say <1, <2, …, <k. Let M ? [n]. Then M has a minimum for each linear ordering <i. So M has at most k minima. A set M ? [n] is called a 2min-set if it has at most two different minima in the linear orderings <1, <2, …, <k. Similarly, a set N ? [n] can have at most k minima and k maxima for any k linear orderings. A set N ? [n] is called a 2minmax-set if there exist a, bN such that all the elements in N | {a, b} lie in between a and b for every linear ordering <i. In this paper, we shall determine the sizes of 2min-sets and 2minmax-sets for certain k linear orderings.  相似文献   

4.
We propose a method of constructing orthogonal polynomials Pn(x) (Krall's polynomials) that are eigenfunctions of higher-order differential operators. Using this method we show that recurrence coefficients of Krall's polynomials Pn(x) are rational functions of n. Let Pn(a,b;M)(x) be polynomials obtained from the Jacobi polynomials Pn(a,b)(x) by the following procedure. We add an arbitrary concentrated mass M at the endpoint of the orthogonality interval with respect to the weight function of the ordinary Jacobi polynomials. We find necessary conditions for the parameters a,b in order for the polynomials Pn(a,b;M)(x) to obey a higher-order differential equation. The main result of the paper is the following. Let a be a positive integer and b⩾−1/2 an arbitrary real parameter. Then the polynomials Pn(a,b;M)(x) are Krall's polynomials satisfying a differential equation of order 2a+4.  相似文献   

5.
Given a set of orthogonal polynomials {Pi(x)}, it is shown that associated with a polynomial a(x)=∑aipi(x) there is a matrix A which possesses several of the properties of the usual companion form matrix C. An alternative and possibly preferable form A' is also suggested. A similarity transformation between A [orA'] and C is given. If b(x) is another polynomial then the matrix b(A) [or b(A')] has properties like those of b(C), relating to the greatest common divisor of a(x) and b(x).  相似文献   

6.
Let L be a linear map on the space Mn of all n by n complex matrices. Let h(x1,…,xn) be a symmetric polynomial. If X is a matrix in Mn with eigenvalues λ1,…,λn, denote h1,…,λn) by h(X). For a large class of polynomials h, we determine the structure of the linear maps L for which h(X)=h(L(X)), for all X in Mn.  相似文献   

7.
《Journal of Algebra》1999,211(2):562-577
LetRbe a Krull ring with quotient fieldKanda1,…,aninR. If and only if theaiare pairwise incongruent mod every height 1 prime ideal of infinite index inRdoes there exist for all valuesb1,…,bninRan interpolating integer-valued polynomial, i.e., anf  K[x] withf(ai) = biandf(R)  R.IfSis an infinite subring of a discrete valuation ringRvwith quotient fieldKanda1,…,aninSare pairwise incongruent mod allMkv  Sof infinite index inS, we also determine the minimald(depending on the distribution of theaiamong residue classes of the idealsMkv  S) such that for allb1,…,bn  Rvthere exists a polynomialf  K[x] of degree at mostdwithf(ai) = biandf(S)  Rv.  相似文献   

8.
Let 〈h n 〉 denote a sequence of positive real numbers. We show that for every set A ? ? there exists a function f: ? → ω such that A = {x ∈ ?: (∈〈h n 〉)[h n ↘ 0 & (? n ∈ ?)(f(x ? h n ) = f(x + h n ) = f(x))]}. This solves a problem of K. Ciesielski, K. Muthuvel and A. Nowik.  相似文献   

9.
Let A be an n × n normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…,n. For α, β ? Qm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k ? {0, 1,…, m} we write |αβ| = k if there exists a rearrangement of 1,…, m, say i1,…, ik, ik+1,…, im, such that α(ij) = β(ij), i = 1,…, k, and {α(ik+1),…, α(im) } ∩ {β(ik+1),…, β(im) } = ?. A new bound for |detA[α|β ]| is obtained in terms of the eigenvalues of A when 2m = n and |αβ| = 0.Let Un be the group of n × n unitary matrices. Define the nonnegative number
where | αβ| = k. It is proved that
Let A be semidefinite hermitian. We conjecture that ρ0(A) ? ρ1(A) ? ··· ? ρm(A). These inequalities have been tested by machine calculations.  相似文献   

10.
For a number ? > 0 and a real function f on an interval [a, b], denote by N(?, f, [a, b]) the least upper bound of the set of indices n for which there is a family of disjoint intervals [a i , b i ], i = 1, …, n, on [a, b] such that |f(a i ) ? f(b i )| > ? for any i = 1, …, n (sup Ø = 0). The following theorem is proved: if {f j } is a pointwise bounded sequence of real functions on the interval [a, b] such that n(?) ≡ lim sup j→∞ N(?, f j , [a, b]) < ∞ for any ? > 0, then the sequence {f j } contains a subsequence which converges, everywhere on [a, b], to some function f such that N(?, f, [a, b]) ≤ n(?) for any ? > 0. It is proved that the main condition in this theorem related to the upper limit is necessary for any uniformly convergent sequence {f j } and is “almost” necessary for any everywhere convergent sequence of measurable functions, and many pointwise selection principles generalizing Helly’s classical theorem are consequences of our theorem. Examples are presented which illustrate the sharpness of the theorem.  相似文献   

11.
The following result is proved: If A and B are distinct n × n doubly stochastic matrices, then there exists a permutation σ of {1, 2,…, n} such that ∏iaiσ(i) > ∏ibiσ(i).  相似文献   

12.
Let Mn(F) be the algebra of n×n matrices over a field F, and let AMn(F) have characteristic polynomial c(x)=p1(x)p2(x)?pr(x) where p1(x),…,pr(x) are distinct and irreducible in F[x]. Let X be a subalgebra of Mn(F) containing A. Under a mild hypothesis on the pi(x), we find a necessary and sufficient condition for X to be Mn(F).  相似文献   

13.
Let n be a positive integer. In this paper we estimate the size of the set of linear forms b1loga1+b2loga2+?+bnlogan, where |bi|?Bi and 1?ai?Ai are integers, as Ai,Bi→∞.  相似文献   

14.
Let A denote an n×n matrix with all its elements real and non-negative, and let ri be the sum of the elements in the ith row of A, i=1,…,n. Let B=A?D(r1,…,rn), where D(r1,…,rn) is the diagonal matrix with ri at the position (i,i). Then it is proved that A is irreducible if and only if rank B=n?1 and the null space of BT contains a vector d whose entries are all non-null.  相似文献   

15.
Let F be a field, F1 be its multiplicative group, and H = {H:H is a subgroup of F1 and there do not exist a, b?F1 such that Ha+b?H}. Let Dn be the dihedral group of degree n, H be a nontrivial group in H, and τn(H) = {α = (α1, α2,…, αn):αi?H}. For σ?Dn and α?τn(H), let P(σ, α) be the matrix whose (i,j) entry is αiδiσ(j) (i.e., a generalized permutation matrix), and
P(Dn, H) = {P(σ, α):σ?Dn, α?τn(H)}
. Let Mn(F) be the vector space of all n×n matrices over F and TP(Dn, H) = {T:T is a linear transformation on Mn (F) to itself and T(P(Dn, H)) = P(Dn, H)}. In this paper we classify all T in TP(Dn, H) and determine the structure of the group TP(Dn, H) (Theorems 1 to 4). An expository version of the main results is given in Sec. 1, and an example is given at the end of the paper.  相似文献   

16.
Let A be a non-empty set and m be a positive integer. Let ≡ be the equivalence relation defined on A m such that (x 1, …, x m ) ≡ (y 1, …, y m ) if there exists a permutation σ on {1, …, m} such that y σ(i) = x i for all i. Let A (m) denote the set of all equivalence classes determined by ≡. Two elements X and Y in A (m) are said to be adjacent if (x 1, …, x m?1, a) ∈ X and (x 1, …, x m?1, b) ∈ Y for some x 1, …, x m?1A and some distinct elements a, bA. We study the structure of functions from A (m) to B (n) that send adjacent elements to adjacent elements when A has at least n + 2 elements and its application to linear preservers of non-zero decomposable symmetric tensors.  相似文献   

17.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

18.
19.
An optimal solution for the following “chess tournament” problem is given. Let n, r be positive integers such that r<n. Put N=2n, R=2r+1. Let XN,R be the set of all ordered pairs (T, A) of matrices of degree N such that T=(tij) is symmetric, A=(aij) is skew-symmetric, tij ∈,{0, 1, 2,…, R), aij ∈{0,1,–1}. Moreover, suppose tii=aii=0 (1?i?N). tij = tik>0 implies j=k, tij=0 is equivalent to aij=0, and |ai1|+|ai2|+…+|aiN|=R (1?i?N). Let p(T, A) be the number of i such that 1?i?N and ai1 + ai2 + … + aiN >0. The main result of this note is to show that max p(T, A) for (T, A)∈XN, R is equal to [n(2r+1)/(r+1)], and a pair (T0, A0) satisfying p(T0, A0)=[n(2r+1)/(r+1)] is also given.  相似文献   

20.
For a positive integer n, an atomic integral domain R is defined to be completely non- n- factorial if for any n atoms a1…, an, the product a1 … a n has as highly nonunique a factorization into atoms as possible in that given any n ? 1 atoms b1,…, bnt - 1, b1b n? 1¦a1 … a n. We show that R is completely non-n-factorial for some n ≥ 2 if and only if (R, M) is a quasilocal domain with [M: M] a DVR having M as its maximal ideal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号