首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
For finite graphs F and G, let NF(G) denote the number of occurrences of F in G, i.e., the number of subgraphs of G which are isomorphic to F. If F and G are families of graphs, it is natural to ask then whether or not the quantities NF(G), FF, are linearly independent when G is restricted to G. For example, if F = {K1, K2} (where Kn denotes the complete graph on n vertices) and F is the family of all (finite) trees, then of course NK1(T) ? NK2(T) = 1 for all TF. Slightly less trivially, if F = {Sn: n = 1, 2, 3,…} (where Sn denotes the star on n edges) and G again is the family of all trees, then Σn=1(?1)n+1NSn(T)=1 for all TG. It is proved that such a linear dependence can never occur if F is finite, no FF has an isolated point, and G contains all trees. This result has important applications in recent work of L. Lovász and one of the authors (Graham and Lovász, to appear).  相似文献   

2.
Let T be a subset of the set of all isomorphism classes of finite groups. We consider the number Fg(x) of positive integers nx such that all groups of order n lie in T. When T consists of the isomorphism classes of all finite groups of any of the following types, we obtain an asymptotic formula for Fg(x): cyclic groups, abelian groups, nilpotent groups, supersolvable groups, and solvable groups. In the course of the arguments, we also obtain, for almost all n, a lower bound for the number of groups of a given order n.  相似文献   

3.
Let Fx1,…,xs be a form of degree d with integer coefficients. How large must s be to ensure that the congruence F(x1,…,xs) ≡ 0 (mod m) has a nontrivial solution in integers 0 or 1? More generally, if F has coefficients in a finite additive group G, how large must s be in order that the equation F(x1,…,xs) = 0 has a solution of this type? We deal with these questions as well as related problems in the group of integers modulo 1 and in the group of reals.  相似文献   

4.
Let G be a compact abelian group, and τ an action of G on a C1-algebra U, such that Uτ(γ)Uτ(γ)1 = Uτ(0) Uτ for all γ ? G?, where Uτ(γ) is the spectral subspace of U corresponding to the character γ on G. Derivations δ which are defined on the algebra UF of G-finite elements are considered. In the special case δ¦Uτ = 0 these derivations are characterized by a cocycle on G? with values in the relative commutant of Uτ in the multiplier algebra of U, and these derivations are inner if and only if the cocycles are coboundaries and bounded if and only if the cocycles are bounded. Under various restrictions on G and τ properties of the cocycle are deduced which again give characterizations of δ in terms of decompositions into generators of one-parameter subgroups of τ(G) and approximately inner derivations. Finally, a perturbation technique is devised to reduce the case δ(UF) ? UF to the case δ(UF) ? UF and δ¦Uτ = 0. This is used to show that any derivation δ with D(δ) = UF is wellbehaved and, if furthermore G = T1 and δ(UF) ? UF the closure of δ generates a one-parameter group of 1-automorphisms of U. In the case G = Td, d = 2, 3,… (finite), and δ(UF) ? UF it is shown that δ extends to a generator of a group of 1-automorphisms of the σ-weak closure of U in any G-covariant representation.  相似文献   

5.
The authors consider irreducible representations π ? N? of a nilpotent Lie group and define a Fourier transform for Schwartz class (and other) functions φ on N by forming the kernels Kφ(x, y) of the trace class operations πφ = ∝Nφ(n)πndn, regarding the π as modeled in L2(Rk) for all π in general position. For a special class of groups they show that the models, and parameters λ labeling the representations in general position, can be chosen so the joint behavior of the kernels Kφ(x, y, λ) can be interpreted in a useful way. The variables (x, y, λ) run through a Zariski open set in Rn, n = dim N. The authors show there is a polynomial map u = A(x, y, λ) that is a birational isomorphism A: Rn → Rn with the following properties. The Fourier transforms F1φ = Kφ(x, y, λ) all factor through A to give “rationalized” Fourier transforms (u) such that ° A = F1φ. On the rationalized parameter space a function f(u) is of the form Fφ = f ? f is Schwartz class on Rn. If polynomial operators T?P(N) are transferred to operators T? on Rn such that F(Tφ) = T?(Fφ), P(N) is transformed isomorphically to P(Rn).  相似文献   

6.
Let F1(x, y),…, F2h+1(x, y) be the representatives of equivalent classes of positive definite binary quadratic forms of discriminant ?q (q is a prime such that q ≡ 3 mod 4) with integer coefficients, then the number of integer solutions of Fi(x, y) = n (i = 1,…, 2h + 1) can be calculated for each natural number n using L-functions of imaginary quadratic field Q((?q)1/2).  相似文献   

7.
Let Fn denote the ring of n×n matrices over the finite field F=GF(q) and let A(x)=ANxN+ ?+ A1x+A0?Fn[x]. A function ?:Fn→Fn is called a right polynomial function iff there exists an A(x)?Fn[x] such that ?(B)=ANBN+?+A1B+ A0 for every B?Fn. This paper obtains unique representations for and determines the number of right polynomial functions.  相似文献   

8.
Let K and K′ be number fields with L = K · K′ and F = KφK′. Suppose that KF and K′F are normal extensions of degree n. Let B be a prime ideal in L and suppose that B is totally ramified in KF and in K′F. Let π be a prime element for BK = B φ K, and let f(x) ∈ F[x] be the minimum polynomial for π over F. Suppose that BK · DL = (B)e. Then,
M(B# : K, K′) = min{m, e(t + 1)}
, where t = min{t(KF), t(K′F)} and m is the largest integer such that (BK′)nm/e φ f(DK′) ≠ {φ}.If we assume in addition to the above hypotheses that [K : F] = [K′: F] = pn, a prime power, and that B divides p and is totally ramified in LF, then
M(B# : K, K′) ? pn?1[(p ? 1)(t + p]
, with t = t(B : L/F).  相似文献   

9.
Let p, q be arbitrary parameter sets, and let H be a Hilbert space. We say that x = (xi)i?q, xi ? H, is a bounded operator-forming vector (?HFq) if the Gram matrixx, x〉 = [(xi, xj)]i?q,j?q is the matrix of a bounded (necessarily ≥ 0) operator on lq2, the Hilbert space of square-summable complex-valued functions on q. Let A be p × q, i.e., let A be a linear operator from lq2 to lp2. Then exists a linear operator ǎ from (the Banach space) HFq to HFp on D(A) = {x:x ? HFq, A〈x, x〉12 is p × q bounded on lq2} such that y = ǎx satisfies yj?σ(x) = {space spanned by the xi}, 〈y, x〉 = Ax, x〉 and 〈y, y〉 = A〈x, x〉12(A〈x, x〉12)1. This is a generalization of our earlier [J. Multivariate Anal.4 (1974), 166–209; 6 (1976), 538–571] results for the case of a spectral measure concentrated on one point. We apply these tools to investigate q-variate wide-sense Markov processes.  相似文献   

10.
Let Xj = (X1j ,…, Xpj), j = 1,…, n be n independent random vectors. For x = (x1 ,…, xp) in Rp and for α in [0, 1], let Fj1(x) = αI(X1j < x1 ,…, Xpj < xp) + (1 ? α) I(X1jx1 ,…, Xpjxp), where I(A) is the indicator random variable of the event A. Let Fj(x) = E(Fj1(x)) and Dn = supx, α max1 ≤ Nn0n(Fj1(x) ? Fj(x))|. It is shown that P[DnL] < 4pL exp{?2(L2n?1 ? 1)} for each positive integer n and for all L2n; and, as n → ∞, Dn = 0((nlogn)12) with probability one.  相似文献   

11.
Let xm ? a be irreducible over F with char F?m and let α be a root of xm ? a. The purpose of this paper is to study the lattice of subfields of F(α)F and to this end C(F(α)F, k) is defined to be the number of subfields of F(α) of degree k over F. C(F(α)F, pn) is explicitly determined for p a prime and the following structure theorem for the lattice of subfields is proved. Let N be the maximal normal subfield of F(α) over F and set n = |N : F|, then C(F(α)F, k) = C(F(α)F, (k, n)) = C(NF, (k, n)). The irreducible binomials xs ? b, xs ? c are said to be equivalent if there exist roots βs = b, γs = a such that F(β) = F(γ). All the mutually inequivalent binomials which have roots in F(α) are determined. Finally these results are applied to the study of normal binomials and those irreducible binomials x2e ? a which are normal over F (char F ≠ 2) together with their Galois groups are characterized.  相似文献   

12.
13.
Let p(t, x, y) be a symmetric transition density with respect to a σ-finite measure m on (E, E), g(x,y)=∫p(t,x,y)dt, and M={σ-finite measures μ?0:∫g(x,y)μ(dx)μ(dy)<∞}. There exists a Gaussian random field Φ={?μ:μ?M} with mean 0 and covariance E?μ?ν=∫g(x,y)μ(dx)ν(dy). Letting F(B)=σ{?μ:μ(Bc)=0} we consider necessary and sufficient conditions for the Markov property (MP) on sets B, C: F(B), F(C) c.i. given F(BC). Of crucial importance is the following, proved by Dynkin: E{?μF(B)}=?μB, where μB is the hitting distribution of the process corresponding to p, m with initial law μ. Another important fact is that ?μ=?ν iff μ, ν have the same potential. Putting these together with an additional transience assumption, we present a potential theoretic proof of the following necessary and sufficient condition for (MP) on sets B, C: For every x?E, TBC=TB+TCθTB=TC+TBθTC a.s. Px where, for D ? E, TD is the hitting time of D for the process associated with p, m. This implies a necessary condition proved by Dynkin in a recent preprint for the case where BC=E and B, C are finely closed.  相似文献   

14.
15.
An n-frame on a Banach space X is E=(E1,?, En) where the Ej's are bounded linear operators on X such that Ej≠0,
j=1nEj
, and EjEkjkEk (j, k=1,?, n). It is known that if two n-frames E and F are sufficiently close to each other, then they are similar, that is, Fj=TEjT-1 with T a bounded linear operator. Among the operators which realize the similarity of the two frames, there is the balanced transformation U(F, E)=(Σnj=1FjEj)(Σnj=1EjFjEj)-12. One of our main results is a local characterization of the balanced transformation. Another operator which implements the similarity between E and F is the direct rotation R(F, E). It comes up in connection with the study of the set of all n-frames as a Banach manifold with an affine connection. Finally, it is shown that for quite a large set of pairs of 2-frames, the direct rotation has a global characterization.  相似文献   

16.
Let [E(Ω)]p be the Cartesian product of the space of real-valued infinitely differentiable functions on a connected open set Ω in Rn with itself p-times. The finitely generated submodules of [E(Ω)]p are of the form im(F) where F: [E(Ω)]q → [E(Ω)]p is a p × q matrix of infinitely differentiable functions on Ω. Let r = max{rank(F(x)): x ? Ω}. The main results of the present paper are that for Ω ? Rn, if the finitely generated submodule im(F) is closed in [E(Ω)]p, then for every x?ω with rank(F(x)) < r there exists an r × r sub-matrix A of F such that x is a zero of finite order of det(A), and for Ω ? R1 the converse also holds.  相似文献   

17.
Let X be a Banach space and T an m-accretive operator defined on a subset D(T) of X and taking values in 2x. For the class of spaces whose bounded closed and convex subsets have the fixed point property for nonexpansive self-mappings, it is shown here that two boundary conditions which imply existence of zeroes for T, appear to be equivalent. This fact is then used to prove that if there exists x0?D(T) and a bounded open neighborhood U of x0, such that ¦T(x0)¦ < r ? ¦T(x)¦ for all x??UD(T), then the open ball B(0; r) is contained in the range of T.  相似文献   

18.
A Dirichlet series associated with a positive definite form of degree δ in n variables is defined by
DF(s,p,α)= α∈Zn?{0}F(α)?s e(ρF(α)+〈α, α〉)
where ? ∈ Q, α ∈ Qn, 〈x, y〉 = x1y1 + ? + xnyn, e(a) = exp (2πia) for aR, and s = σ + ti is a complex number. The author proves that: (1) DF(s, ?, α) has analytic continuation into the whole s-plane, (2) DF(s, ?, α), ? ≠ 0, is a meromorphic function with at most a simple pole at s = nδ. The residue at s = nδ is given explicitly. (3) ? = 0, α ? Zn, DF(s, 0, α) is analytic for α>, n(δ ? 1).  相似文献   

19.
Let Nm(x) be the number of arithmetic progressions that consist of m terms, all primes and not larger than x, and set Fm(x) = Cmx2logmx (Cm explicitly given). It is shown that Hardy and Littlewood's prime k-tuple conjecture implies that Nm(x) = Fm(x){1 + Σj=1Najlog?jx + O((log x)?N?1)}, (here the bracket represents an asymptotic series with explicitly computable coefficients). This formula holds rather trivially for m = 1 and m = 2. It is proved here for m = 3, by the Vinogradov version of the Hardy-Ramanujan-Littlewood circle method.  相似文献   

20.
We show that under mild conditions the joint densities Px1,…,xn) of the general discrete time stochastic process Xn on pH can be computed via
Px1,…,xn(x1,…,xn) = 6?T(x1)…T(xn)62
where ? is in a Hilbert space pH, and T (x), x ? pH are linear operators on pH. We then show how the Central Limit Theorem can easily be derived from such representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号