首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrain of Clostridium thermoaceticum (ATCC 49707) was evaluated for its homoacetate potential. This thermophilic anaerobe best produces acetate from glucose at pH 6.0 and 59°C with a yield of 83% of theoretical. Enzyme hydrolysis of two substrates, a-cellulose and a pulp mill sludge, yielded 68% and 70% digestion, respectively. The optimum conditions for the simultaneous saccharification and fermentation (SSF) were substrate dependent: 55°C, pH 6.0 for α-cellulose, and 55°C, pH 5.5 for the pulp mill sludge. In the SSF with α-cellulose, the overall yield of acetate was strongly influenced by the enzyme loading. In a fed-batch operation of SSF with α-cellulose, an overall acetic acid yield of 60 wt% was obtained. Among the factors limiting the yields were incomplete digestion by the enzyme and the end-product inhibition. In the SSF of pulp mill sludge, inhibitors present in the sludge severely limited bacterial action. A large accumulation of glucose developed over the entire process, changing the intended SSF operation into a separate hydrolysis and fermentation operation. Despite a long lag phase of microbial growth, a terminal yield of 85% was obtained with this substrate.  相似文献   

2.
The cellulose reactivity of two lignocellulosic feedstocks, switchgrass and poplar, was evaluated under straight saccharification (SS) and simultaneous saccharification and fermentation (SSF) conditions following dilute sulfuric acid pretreatments designed for optimum xylose yields. The optimum pretreatment conditions, within the constraints of the experimental system (Parr batch reactor), were 1.2% acid, 180°C, and 0.5 min for switchgrass and 1% acid, 180°C, and 0.56 min for poplar. The cellulase enzyme preparation was from Trichoderma reesei and fermentations were done with Saccharomyces cerevisiae. Time courses for SS were monitored as the sum of glucose and cellobiose; those for SSF as the sum of glucose, cellobiose, and ethanol. Percentage conversions under SS conditions were 79.1% and 91.4% for the pretreated poplar and switchgrass feedstocks, respectively. Analogous values under SSF conditions were 73.0% and 90.3% for pretreated poplar and switchgrass, respectively.  相似文献   

3.
A total of 27 yeast strains belonging to the groupsCandida, Saccharomyces, andKluyveromyces were screened for their ability to grow and ferment glucose at temperatures ranging 32-45°C. K. marxianus andK. fragilis were found to be the best ethanol producing organisms at the higher temperature tested and, so, were selected for subsequent simultaneous saccharification and fermentation (SSF) studies.  相似文献   

4.
The enzymatic reaction in the simultaneous saccharification and fermentation (SSF) is operated at a temperature much lower than its optimum level. This forces the enzyme activity to be far below its potential, consequently raising the enzyme requirement. To alleviate this problem, a nonisothermal simultaneous saccharification and fermentation process (NSSF) was investigated. The NSSF is devised so that saccharification and fermentation occur simultaneously, yet in two separate reactors that are maintained at different temperatures. Lignocellulosic biomass is retained inside a column reactor and hydrolyzed at the optimum temperature for the enzymatic reaction (50°C). The effluent from the column reactor is recirculated through a fermenter, which runs at its optimum temperature (20-30°C). The cellulase enzyme activity is increased by a factor of 2-3 when the hydrolysis temperature is raised from 30 to 50°C. The NSSF process has improved the enzymatic reaction in the SSF to the extent that it reduces the overall enzyme requirement by 30-40%. The effect of temperature on β-glucosidase activity was the most significant among the individual cellulase compounds. Both ethanol yield and productivity in the NSSF are substantially higher than those in the SSF at the enzyme loading of 5 IFPU/g glucan. With 10 IFPU/g glucan, improvement in productivity was more discernible for the NSSF. The terminal yield attainable in 4 d with the SSF was reachable in 40 h with the NSSF.  相似文献   

5.

Previous shake flask and stirred tank evaluations of temperature tolerant (37–43°C) yeasts in simultaneous saccharification and fermentation (SSF) on Sigmacell-50 cellulose substrates to ethanol have identified several good microorganisms for further SSF studies (27). Of these, the glucose fermenting yeastCandida acidothermophilum, C. brassicae, Saccharomyces cerevisiae, S. uvarum, and a mixed culture of the cellobiose fermenting yeastBrettanomyces clausenii withS. cerevisiae as a control were chosen for shake flask SSF screening experiments with pretreated wheat straw. This study indicates that theSaccharomyces strainscerevisiae anduvarum, give very good performance at high cellulase loadings or when supplemented with Novo-188 β-glucosidase. In fact, with the higher enzyme loadings these yeast will give complete conversion of cellulose to ethanol. Yet at the lower, more economical enzyme loadings, the mixed culture ofBrettanomyces clausenii andS. cerevisiae performs better than any single yeast.

  相似文献   

6.
Wheat straw is one of the main agricultural residues of interest for bioethanol production. This work examines conversion of steam-pretreated wheat straw (using SO2 as a catalyst) in a hybrid process consisting of a short enzymatic prehydrolysis step and a subsequent simultaneous saccharification and fermentation (SSF) step with a xylose-fermenting strain of Saccharomyces cerevisiae. A successful process requires a balanced design of reaction time and temperature in the prehydrolysis step and yeast inoculum size and temperature in the SSF step. The pretreated material obtained after steam pretreatment at 210 °C for 5 min using 2.5 % SO2 (based on moisture content) showed a very good enzymatic digestibility at 45 °C but clearly lower at 30 °C. Furthermore, the pretreatment liquid was found to be rather inhibitory to the yeast, partly due to a furfural content of more than 3 g/L. The effect of varying the yeast inoculum size in this medium was assessed, and at a yeast inoculum size of 4 g/L, a complete conversion of glucose and a 90 % conversion of xylose were obtained within 50 h. An ethanol yield (based on the glucan and xylan in the pretreated material) of 0.39 g/g was achieved for a process with this yeast inoculum size in a hybrid process (10 % water-insoluble solid (WIS)) with 4 h prehydrolysis time and a total process time of 96 h. The obtained xylose conversion was 95 %. A longer prehydrolysis time or a lower yeast inoculum size resulted in incomplete xylose conversion.  相似文献   

7.
Ethanol production was studied in simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce at 42°C, using a thermotolerant yeast. Three yeast strains of Kluyveromyces marxianus were compared in test fermentations. SSF experiments were performed with the best of these on 5% (w/w) of substrate at a cellulase loading of 37 filter paper units/g of cellulose, and a β-glucosidase loading of 38 IU/gof cellulose. The detoxification of the substrate and the lack of pH control in the experiments increased the final ethanol concentration. The final ethanol yield was 15% lower compared to SSF with Saccharomyces cerevisiae at 37°C, owing to the cessation of ethanol fermentation after the first 10 h.  相似文献   

8.
Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.  相似文献   

9.
Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g?1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g?1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.  相似文献   

10.
Experimental results are presented for continuous conversion of pretreated hardwood flour to ethanol. A simultaneous saccharification and fermentation (SSF) system comprised ofTrichoderma reesei cellulase supplemented with additional β-glucosidase and fermentation bySaccharomyces cerevisiae was used for most experiments, with data also presented for a direct microbial conversion (DMC) system comprised ofClostridium thermocellum. Using a batch SSF system, dilute acid pretreatment of mixed hardwood at short residence time(10 s, 220°C, 1% H2SO4) was compared to poplar wood pretreated at longer residence time (20 min, 160°C, 0.45% H2SO4). The short residence time pretreatment resulted in a somewhat (10–20%) more reactive substrate, with the reactivity difference particularly notable at low enzyme loadings and/or low agitation. Based on a preliminary screening, inhibition of SSF by byproducts of short residence time pretreatment was measurable, but minor. Both SSF and DMC were carried out successfully in well-mixed continuous systems, with steady-state data obtained at residence times of 0.58–3 d for SSF as well as 0.5 and 0.75 d for DMC. The SSF system achieved substrate conversions varying from 31% at a 0.58-d residence time to 86% at a 2-d residence time. At comparable substrate concentrations (4–5 g/l) and residence times (0.5–0.58 d), substrate conversion in the DMC system (77%) was significantly higher than that in the SSF system (31%). Our results suggest that the substrate conversion in SSF carried out in CSTR is relatively insensitive to enzyme loading in the range 7–25 U/g cellulose and to substrate concentration in the range of 5–60 g/L cellulose in the feed.  相似文献   

11.
Lignocellulosic materials pretreated using liquid hot water (LHW) (220°C, 5 MPa, 120 s) were fermented to ethanol by batch simultaneous saccharification and fermentation (SSF) usingSaccharomyces cerevisiae in the presence ofTrichoderma reesei cellulase. SSF of sugarcane bagasse (as received), aspen chips (smallest dimension 3 mm), and mixed hardwood flour (−60 +70 mesh) resulted in 90% conversion to ethanol in 2–5 d at enzyme loadings of 15–30 FPU/g. In most cases, 90% of the final conversion was achieved within 75 h of inoculation. Comminution of the pretreated substrates did not affect the conversion to ethanol. The hydrolysate produced from the LHW pretreatment showed slight inhibition of batch growth ofS. cerevisiae. Solids pretreated at a concentration of 100 g/L were as reactive as those pretreated at a lower concentration, provided that the temperature was maintained at 220°C.  相似文献   

12.
Ethanol production from corn starch in a fluidized-bed bioreactor   总被引:1,自引:0,他引:1  
The production of ethanol from industrial dry-milled corn starch was studied in a laboratory-scale fluidized-bed bioreactor using immobilized biocatalysts. Saccharification and fermentation were carried out either simultaneously or separately. Simultaneous saccharification and fermentation (SSF) experiments were performed using small, uniform κ-carrageenan beads (1.5–2.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. Dextrin feeds obtained by the hydrolysis of 15% drymilled corn starch were pumped through the bioreactor at residence times of 1.5–4h. Single-pass conversion of dextrins ranged from 54–89%, and ethanol concentrations of 23–36 g/L were obtained at volumetric productivities of 9–15 g/L-h. Very low levels of glucose were observed in the reactor, indicating that saccharification was the rate-limiting step. In separate hydrolysis and fermentation (SHF) experiments, dextrin feed solutions of 150–160 g/L were first pumped through an immobilized-glucoamylase packed column. At 55°C and a residence time of 1 h, greater than 95% conversion was obtained, giving product streams of 162–172 g glucose/L. These streams were then pumped through the fluidized-bed bioreactor containing immobilized Z. mobilis. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L were achieved, resulting in an overall process productivity of 23 g/L-h. Atresidence times of 1.5 and 1 h, conversions of 75 and 76%, ethanol concentrations of 49 and 47 g/L, and overall process productivities of 19 and 25 g/L-h, respectively, were achieved.  相似文献   

13.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

14.
Olive tree wood and sunflower stalks are agricultural residues largely available at low cost in Mediterranean countries. As renewable lignocellulosic materials, their bioconversion may allow both obtaining a value-added product, for fuel ethanol, and facilitating their elimination. In this work, the ethanol production from olive tree wood and sunflower stalks by a simultaneous saccharification and fermentation (SSF) process is studied. As a pretreatment, steam explosion at different temperatures was applied. The water insoluble fractions of steam-pretreated sunflower stalks and steamed, delignified olive tree wood were used as substrates at 10% w/v concentration for an SSF process by a cellulolytic commercial complex and Saccharomyces cerevisiae. After 72-h fermentation, ethanol concentrations up to 30 g/L were obtained in delignified steam-pretreated olive tree wood at 230°C and 5 min. Sunflower stalks pretretated at 220°C and 5 min gave maximum ethanol concentrations of 21 g/L in SSF experiments.  相似文献   

15.
Ethanol production from Jerusalem artichoke was studied using inulinase and Z.mobilis by simultaneous saccharification and fermentation (SSF) process. The SSF process showed higher ethanol yield and productivity than the acid or enzymatic prehydrolyzed two-step process. The optimum temperature and inulinase concentration for SSF were 35°C and 0.25% (v/w, 4.4 units/g of sugar), respectively. In order to operate the SSF process in a continuous mode, inulinase and Z.mobilis cells were coimmobilized in alginate beads, using chitin as a matrix for enzyme immobilization. The maximum ethanol productivity of the continuous SSF process was 55.1 g/L/h, with 55% conversion yield. At the conversion yield of 90%, the productivity was 32.7 g/L/h. The continuous SSF system could be operated stably over 2 wk with an ethanol concentration of 48.6 g/L (95% of theoretical yield).  相似文献   

16.
Wheat straw was pretreated with dilute (0.5%) sulfuric acid at 140°C for 1 h. Pretreated straw solids were washed with deionized water to neutrality and then stored frozen at –20°C. The approximate composition of the pretreated straw solids was 64% cellulose, 33% lignin, and 2% xylan. The cellulose in the pretreated wheat straw solids was converted to ethanol in batch simultaneous saccharification and fermentation experiments at 37°C using cellulase enzyme fromTrichoderma reesei (Genencor 150 L) with or without supplementation with β–glucosidase fromAspergillus niger (Novozyme 188) to produce glucose sugar and the yeastSaccharomyces cerevisiae to ferment the glucose into ethanol. The initial cellulose concentrations were adjusted to 7.5, 10, 12.5, 15, 17.5, and 20% (w/w). Since wheat straw particles do not form slurries at these concentrations and cannot be mixed with conventional impeller mixers used in laboratory fermenters, a simple rotary fermenter was designed and fabricated for these experiments. The results of the simultaneous saccharification and fermentation (SSF) experiments indicate that the cellulose in pretreated wheat straw can be efficiently fermented into ethanol for up to a 15% cellulose concentration (24.4% straw concentration).  相似文献   

17.
The olive pulp fraction contained in the residue generated in olive oil extraction by a two-step centrifugation process can be upgraded by using the cellulose fraction to produce ethanol and recovering high value phenols (tyrosol and hydroxytyrosol). Olive pulp was pretreated in a laboratory scale stirred autoclave at different temperatures (150–250°C). Pretreatment was evaluated regarding cellulose recovery, enzymatic hydrolysis effectiveness ethanol production by a simultaneous saccharification and fermentation process (SSF), and phenols recovery in the filtrate. The pretreatment of olive pulp using water at temperatures between 200°C and 250°C enhanced enzymatic hydrolysis. Maximum ethanol production (11.9 g/L) was obtained after pretreating pulp at 210°C in a SSF fed-batch procedure. Maximum hydroxytyrosol recovery was obtained in the liquid fraction when pretreated at 230°C.  相似文献   

18.
The development of technologies for cellulosic ethanol production by simultaneous saccharification and fermentation (SSF) depends on the use of microorganisms with high fermentative rates and thermotolerance. In this study, the ability of five Kluyveromyces marxianus strains to produce ethanol from glucose at 45 °C was investigated. The highest fermentative parameters were observed with K. marxianus NRRL Y-6860, which was then further studied. An initial evaluation of the oxygen supply on ethanol production by the selected yeast and a comparison of SSF process from acid pretreated rice straw between K. marxianus NRRL Y-6860 and Saccharomyces cerevisiae at 30 and 45 °C were carried out. Under the lowest evaluated conditions of aeration and agitation, K. marxianus NRRL Y-6860 produced 21.5 g/L ethanol from 51.3 g/L glucose corresponding to YP/S of 0.44 g/g and QP of 3.63 g/L h. In the SSF experiments, K. marxianus NRRL Y-6860 was more efficient than S. cerevisiae at both evaluated temperatures (30 and 45 °C), attained at the highest temperature an ethanol yield of 0.24 g/g and productivity of 1.44 g/L h.  相似文献   

19.

Ethanol, a promising alternative fuel, can be produced by the simultaneous saccharification and fermentation (SSF) of lignocellulosic biomass, which combines the enzymatic hydrolysis of cellulose to glucose and the fermentation of glucose to ethanol by yeast in a single step.

A mathematical model that depicts the kinetics of SSF has been developed based on considerations of the quality of the substrate and enzyme, and the substrate-enzyme-microorganism interactions. Critical experimentation has been performed in conjunction with multiresponse nonlinear regression analysis to determine key model parameters regarding cell growth and ethanol production. The model will be used for rational SSF optimization and scale-up.

  相似文献   

20.
Conversion of food wastes into lactic acid by simultaneous saccharification and fermentation (SSF) was investigated. The process involves saccharification of the starch component in food wastes by a commercial amylolytic enzyme preparation (a mixture of amyloglucosidase, α-amylase, and protease) and fermentation by Lactobacillus delbrueckii. The highest observed overall yield of lactic acid in the SSF was 91% of theoretical. Lactic acid concentration as high as 80 g/L was attainable in 48 h of the SSF. The optimum operating conditions for the maximum productivity were found to be 42°C and pH 6.0. Without supplementation of nitrogen-containing nutrients, the lactic acid yield in the SSF decreased to 60%: 27 g/L of lactic acid from 60 g/L of food waste. The overall performance of the SSF, however, was not significantly affected by the elimination of mineral supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号