首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
张强  郭玉国 《物理化学学报》2021,37(1):2011061-0
当今,国际格局正在产生重大变革,能源利用从传统化石能源主体逐渐转向低碳可再生能源。以电化学反应为基础的高效储能体系不受地理环境限制。发展高能量密度与高安全性的电化学储能技术,是以可再生能源、新能源汽车工业为代表的能源革命的重要环节。目前,锂离子电池技术成熟度高,在促进社会智能化、便携化进程中发挥着重要作用。基于电化学插层反应的锂离子电池经过将近三十年的发展,能量密度趋近于理论极限,但仍不能满足当代社会的储能需求。因此,发展高安全高比容量的下一代电极材料势在必行。  相似文献   

2.
Liwei CHEN 《物理化学学报》2019,35(12):1299-1300
<正>随着人类对能源需求的持续提高,太阳能、风能等可再生能源的开发和利用备受关注。可再生能源发电的规模化发展需要与之相匹配的大规模、高效能量存储技术。液流电池是有潜力的大型电化学储能技术之一,具有储能规模大、循环寿命长、安全性高等优势1,2。发展更高储能密度、更低成本、可商业化应用的液流电池技术是实现国家能源安全和可持续发展的重大需求。液流电池的  相似文献   

3.
编者按     
《化学进展》2007,19(7):I0001-I0001
面对日益严重的能源与环境问题,为保障能源安全,保护生态环境,实现可持续性发展,我国和世界其它国家都十分重视可再生能源的开发和利用。国务院关于替代能源的发展思路是:以新能源替代传统能源,以优势能源替代稀缺能源,以可再生能源替代化石能源,逐步提高替代能源在能源结构中的比重。我国把车用燃料和替代石油产品作为发展重点,因而利用农林生物质发展燃料乙醇和生物柴油等可再生能源具有重要意义。2007年6月7日,国务院总理温家宝主持召开国务院常务会议,审议并原则通过了《可再生能源中长期发展规划》。规划中明确提出,发展可再生能源不得占用耕地,不得消耗大量粮食,不得破坏生态环境。因此,发展燃料乙醇、生物柴油产业必须主要以非粮农林生物质为原料,采用先进的清洁生产技术。  相似文献   

4.
陈卫 《电化学》2015,21(6):503
可以预见,在相当一段时期内,能源和环境将是全球发展的两大主题. 其实,人类对能源的获取方式将对地球的生态环境和人类未来的生存状态和生活方式产生重要影响. 正因为如此,世界各国正在大力发展可再生能源和清洁能源. 电化学能源是将化学能高效转变为电能的一种能量转换方式,它历史悠久,但不断被改进和创新,尤其是近年来得到了较快的发展. 目前,电化学能源转换和存储器件主要包括一次电池(如锌锰电池等)、二次电池(如铅酸电池、镍氢电池、锂离子电池等)、燃料电池、金属-空气电池以及超级电容器等. 电化学能源和其它可再生能源相互补充、交叉利用将是未来清洁能源的主要发展方向.  相似文献   

5.
《催化学报》2007,28(3):245-245
能源资源与技术是影响中国未来经济可持续发展、能源安全保障及和谐社会建设的基础.如何立足国内资源,提高能源利用效率,加大新能源与可再生能源开发力度,保障我国经济社会发展的能源需求成为青年科技工作者面临的最大挑战.催化技术事关能源资源转化与利用的方方面面,又是新能源与可再生能源开发的关键,  相似文献   

6.
师凯  司娣  滕雪  陈立松  施剑林 《催化学报》2023,(10):143-152
随着人口的不断增长和经济的高速发展,化石燃料(煤、石油和天然气等)的使用量急剧增加,能源短缺、温室效应、环境污染等问题日益严重.因此,发展可再生的清洁能源以取代化石燃料对人类社会的可持续发展至关重.由于氢气具有能量密度高、来源丰富、清洁无毒等优点,有望成为替代化石燃料的最有前景的可再生能源.然而,目前氢气主要来自化石燃料的蒸汽重整,该过程需要高温高压,而且产生的氢气杂质含量高、纯化过程复杂,不能满足绿色化学生产的要求.利用可再生电力电解水制氢是一种绿色高效的制氢方式,但其实际应用受限于动力学过程缓慢的阳极析氧反应(OER).因此,采用动力学过程更快的有机小分子(甲醇、乙二醇、甘油等)氧化反应来替代OER,不仅可以降低制氢能耗,还能在制氢的同时获得高附加值氧化产物.本文采用水热结合高温焙烧法制备了负载于导电碳纸上CuCoN0.6(CuCoN0.6/CP)纳米线催化剂.采用扫描电子显微镜与透射电子显微镜等对催化剂形貌进行表征.结果表明,表面粗糙的CuCoN0.6纳米线组成的纳米小球与碳纸紧密结合.X射线光电子能谱结果表明,C...  相似文献   

7.
编者按     
面对日益严重的能源与环境问题,为保障能源安全,保护生态环境,实现可持续性发展,我国和世界其它国家都十分重视可再生能源的开发和利用。国务院关于替代能源的发展思路是:以新能源替代传统能源,以优势能源替代稀缺能源,以可再生能源替代化石能源,逐步提高替代能源在能源结构中的比重。我国把车用燃料和替代石油产品作为发展重点,因而利用农林生物质发展燃料乙醇和生物柴油等可再生能源具有重要意义。2007年6月7日,国务院总理温家宝主持召开国务院常务会议,审议并原则通过了《可再生能源中长期发展规划》。规划中明确提出,发展可再生能源不得…  相似文献   

8.
可再生能源与电解水制氢技术的结合是实现可持续制氢的最佳途径. 然而,传统电解水技术中解决氢-氧同时、同步、同地产生的问题必须依赖于膜分离技术,大幅限制了氢-氧分离和氢气异地运输的灵活性,并阻碍了可再生能源(如风能、太阳能)与电解水技术的直接结合. 针对上述问题,作者课题组在近期提出了基于电池电极反应的分步法电解水制氢技术,即通过电池电极的可逆电化学反应将现有电解水过程拆分为制氢和制氧分立步骤,实现在无膜条件下氢气和氧气的分时、分地交替制备,提升了电解水制氢的灵活性,促进了可再生能源向氢能的直接转化. 本文将介绍这一新技术的研究进展,并分析这一技术的优点和面临的挑战.  相似文献   

9.
正过度开发和使用化石能源造成了目前世界能源短缺,并且导致了严重的环境污染。为了实现人类的可持续发展,开发和利用经济、洁净的新能源是21世纪世界能源科技的主题。固体氧化物燃料电池(SOFC)是一种高效、清洁、环境友好、燃料选择范围宽广的能源转换技术1。其中阴极材料是SOFC的一个重要组成部分,涉及氧还原反应(ORR)过程,其性能的好坏直接影响电池的性能。目前开发的一些经典中温(500-800°C)SOFC  相似文献   

10.
电力的供应紧张已成为制约我国国民经济稳定、可持续发展的瓶颈。电力系统对大规模储能技术提出了现实需求。同时,基于可再生能源发电的分布式供能技术将成为我国能源领域的发展重点。可再生能源(如风能、太阳能等)发电具有不稳定和不连续的间歇性特点,需要开发和建设配套的储能电池来保证发电和供电的连续和平稳。因此,高效率、大功率、大容量的电能存储技术是实现我国能源可持续发展的关键技术之一。  相似文献   

11.
As the nations of the world continue to develop, their industrialization and growing populations will require increasing amounts of energy. Yet, global energy consumption, even at present levels, has already given rise to major concerns over the security of future supplies, together with the attendant twin problems of environmental degradation and climate change. Accordingly, countries are examining a whole range of new policies and technology issues to make their energy futures ??sustainable??, that is, to maintain economic growth and cultural values whilst providing energy security and environmental protection. A step in the right direction is to place electrochemical power sources??serviceable, efficient and clean technology??at the cutting edge of energy strategies, regardless of the relatively low price of such traditional fuels as coal, mineral oil and natural gas. Following a chronicle of the events that led up to the discovery of batteries and fuel cells, the paper discusses the application of these devices as important technology for shifting primary energy demand away from fossil fuels and towards renewable sources that are more abundant, less expensive and/or more environmentally benign. Finally, consideration is given to the idea of introducing hydrogen as the universal vector for conveying renewable forms of energy and also as the ultimate non-polluting fuel. Fuel cells are the key enabling technology for a hydrogen economy. As requested, the paper opens with a brief account of the circumstances by which the author joined others on a fascinating journey on the electrochemical road to sustainability.  相似文献   

12.
氢气作为能量载体的氢能技术由于其清洁性、高能量密度等优势已获得越来越多的青睐与关注. 其中,可持续的产氢技术是未来氢能经济发展的必要先决条件. 通过可再生资源电力驱动的电解水技术是支持氢能经济可持续发展的重要途径,高活性、低成本的析氢催化剂的开发利用是提高水电解技术效率并降低其成本的关键因素. 本文主要介绍了近年来包括低铂催化剂和金属硫化物、金属磷化物、金属硒化物等非铂过渡金属催化剂在析氢方面的研究进展,详细讨论了析氢反应的催化性能、合成方法以及结构?鄄催化性能的关系,最后总结展望了水电解低铂及非铂过渡金属催化剂在未来发展过程中所面临的机遇与挑战.  相似文献   

13.
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2-based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.  相似文献   

14.
Hydrogen energy technology with hydrogen as an energy carrier is gaining more and more attention due to its cleanliness and high energy density.Hydrogen fuel cell vehicles have been listed as one of the ultimate energy technologies in the 21st century.Among them, sustainable hydrogen production technology is a necessary prerequisite for the future development of hydrogen energy economy.Electrolyzed water technology driven by renewable resources represents an important way to support the sustainable development of hydrogen energy economy.The development and utilization of high activity, low cost hydrogen evolution catalysts is a key factor in improving the efficiency and reducing the cost of water electrolysis technology.This paper mainly introduces the recent research progress of hydrogen evolution catalysts including low platinum catalysts and non-platinum transition metal catalysts such as metal sulfides metal phosphides, metal selenides, etc; catalytic properties, synthesis methods, and structure-catalytic properties.Finally, the advantages and challenges of water electrolysis low platinum and non-platinum transition metal catalysts in the future development are prospected. © 2018 Chinese Chemical Society. All rights reserved.  相似文献   

15.
Sustainability evaluation of wastewater treatment helps to reduce greenhouse gas emissions, as it emphasizes the development of green technologies and optimum resource use rather than the end-of-pipe treatment. The conventional approaches for treating acid mine drainages (AMDs) are efficient; however, they need enormous amounts of energy, making them less sustainable and causing greater environmental concern. We recently demonstrated the potential of immobilized acid-adapted microalgal technology for AMD remediation. Here, this novel approach has been evaluated following emergy and carbon footprint analysis for its sustainability in AMD treatment. Our results showed that imported energy inputs contributed significantly (>90%) to the overall emergy and were much lower than in passive and active treatment systems. The microalgal treatment required 2–15 times more renewable inputs than the other two treatment systems. Additionally, the emergy indices indicated higher environmental loading ratio and lower per cent renewability, suggesting the need for adequate renewable inputs in the immobilized microalgal system. The emergy yield ratio for biodiesel production from the microalgal biomass after AMD treatment was >1.0, which indicates a better emergy return on total emergy spent. Based on greenhouse gas emissions, carbon footprint analysis (CFA), was performed using default emission factors, in accordance with the IPCC standards and the National Greenhouse Energy Reporting (NGER) program of Australia. Interestingly, CFA of acid-adapted microalgal technology revealed significant greenhouse gas emissions due to usage of various construction materials as per IPCC, while SCOPE 2 emissions from purchased electricity were evident as per NGER. Our findings indicate that the immobilized microalgal technology is highly sustainable in AMD treatment, and its potential could be realized further by including solar energy into the overall treatment system.  相似文献   

16.
煤炭能源中的化学问题*   总被引:4,自引:0,他引:4  
刘振宇 《化学进展》2000,12(4):458-462
煤炭是我国的主要能源, 国家可持续发展要求煤的高效洁净燃烧和高效洁净转化。煤炭能源中的主要化学问题就是解决效率、污染、能源形式转化过程中所遇到的化学问题, 包括对煤组成结构的认识、煤中不同组分在热场中的化学变化与相互作用和阶段特征, 特别是煤中污染组分的赋存形态和变迁规律、煤基合成气的催化反应等。  相似文献   

17.
The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable, and efficient systems for the conversion and storage of renewable energy sources, such as solar energy. The production of hydrogen, a fuel with remarkable properties, through sunlight-driven water splitting appears to be a promising and appealing solution. While the active sites of enzymes involved in the overall water-splitting process in natural systems, namely hydrogenases and photosystem II, use iron, nickel, and manganese ions, cobalt has emerged in the past five years as the most versatile non-noble metal for the development of synthetic H(2)- and O(2)-evolving catalysts. Such catalysts can be further coupled with photosensitizers to generate photocatalytic systems for light-induced hydrogen evolution from water.  相似文献   

18.
Electrochemical hydrogen storage in porous carbon materials is emerging as a cost-effective hydrogen storage and transport technology with competitive power and energy densities. The merits of electrochemical hydrogen storage using porous conductive carbon-based electrodes are reviewed. The employment of acidic electrolytes in such storage systems is compared with alkaline electrolytes. The recent innovations of a proton battery for smaller-scale electricity storage, and a proton flow reactor system for larger (grid)-scale storage and bulk export of hydrogen produced from renewable energy, are briefly described. It is argued that such systems, along with variants proposed by others, all of which rely on electrochemical hydrogen storage in porous carbons, can contribute to the search for energy storage technologies essential for the transition to a zero-emission global economy.  相似文献   

19.
The transition to sustainable transportation has fueled the need for innovative electric vehicle (EV) charging solutions. Building Integrated Photovoltaics (BIPV) systems have emerged as a promising technology that combines renewable energy generation with the infra-structure of buildings. This paper comprehensively reviews the BIPV system for EV charging, focusing on its technology, application, and performance. The review identifies the gaps in the existing literature, emphasizing the need for a thorough examination of BIPV systems in the context of EV charging. A detailed review of BIPV technology and its application in EV charging is presented, covering aspects such as the generation of solar cell technology, BIPV system installation, design options and influencing factors. Furthermore, the review examines the performance of BIPV systems for EV charging, focusing on energy, economic, and environmental parameters and their comparison with previous studies. Additionally, the paper explores current trends in energy management for BIPV and EV charging, highlighting the need for effective integration and recommending strategies to optimize energy utilization. Combining BIPV with EV charging provides a promising approach to power EV chargers, enhances building energy efficiency, optimizes the building space, reduces energy losses, and decreases grid dependence. Utilizing BIPV-generated electricity for EV charging provides electricity and fuel savings, offers financial incentives, and increases the market value of the building infrastructure. It significantly lowers greenhouse gas emissions associated with grid and vehicle emissions. It creates a closed-loop circular economic system where energy is produced, consumed, and stored within the building. The paper underscores the importance of effective integration between Building Integrated Photovoltaics (BIPV) and Electric Vehicle (EV) charging, emphasizing the necessity of innovative grid technologies, energy storage solutions, and demand-response energy management strategies to overcome diverse challenges. Overall, the study contributes to the knowledge of BIPV systems for EV charging by presenting practical energy management, effectiveness and sustainability implications. It serves as a valuable resource for researchers, practitioners, and policymakers working towards sustainable transportation and energy systems.  相似文献   

20.
There is widespread recognition that the use of energy in the twenty-first century must be sustainable. Because of its extraordinary flexibility, silica sol–gel chemistry offers the opportunity to create the novel materials and architectures which can lead to significant advances in renewable energy and energy storage technologies. In this paper, we review some of the significant contributions of silica sol–gel chemistry to these fields with particular emphasis on electrolytes and separators where sol–gel approaches to functionalization and encapsulation have been of central importance. Examples are presented in the areas of dye-sensitized solar cells, biofuel cells, proton exchange membrane fuel cells, redox flow batteries and electrochemical energy storage. Original work is also included for the sol–gel encapsulation of a room temperature ionic liquid to create a solid state electrolyte for electrochemical capacitors. In view of the critical importance of energy and the versatility of the sol–gel process, we expect the sol–gel field to play an increasingly important role in the development of sustainable energy generation and storage technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号