首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The composite ion exchangers were tested for their ability to remove UO2 2+ from aqueous solutions. Polyacrylonitrile (PAN) composites having natural zeolite, clinoptilolite, and synthetic zeolite, zeolite X, were used as an adsorbents. The influences of pH, U(VI) concentration, temperature and contact time on the sorption behavior of U(VI) were investigated in order to gain a macroscopic understanding of the sorption mechanism. The optimum adsorption conditions were determined for two composites. The sorption behaviors of uranium on both composites from aqueous systems have been studied by batch technique. Parameters on desorption were also investigated to recover the adsorbed uranium.  相似文献   

2.
3.
Lithium uptake in fixed-pH solution by ion sieves   总被引:1,自引:0,他引:1  
In this study, Li(+) uptake by ion sieves was studied in a fixed-pH aqueous phase using a pH 8.0 buffer solution of ammonia/ammonium chloride. Two different spinel-type manganese oxide ion sieves were used to investigate the effect of intrinsic properties of ion sieves on Li(+) uptake. The effect of ionic strength was also considered for potential recovery of lithium from seawater and brine. The results of Li(+) uptake indicated that the sorption isotherms fit the Langmuir model well. The uptake was found to obey a pseudo-second-order rate. The thermodynamic parameters, DeltaG(0), DeltaH(0), and DeltaS(0), were calculated, and the results indicated that the Li(+) uptake by both ion sieves was endothermic. The influence of ionic strength was mainly found on the kinetics of Li(+) uptake. Moreover, the global reaction rate is probably controlled by both intraparticle diffusion and boundary layer diffusion, and the extent of control is greater for intraparticle diffusion than for boundary layer diffusion for Sieve-1; the reverse is for Sieve-2. Finally, Sieve-2, with high H content and small grain size, was proposed as a more suitable absorbent for recovery of lithium from seawater or brine.  相似文献   

4.

Urea, sodium hydroxide and sodium sulfide were used to treat the cuticle layer of wool before graft copolymerization and amidoximation to enhance the uranium uptaking capacity of amidoximated wool fiber based adsorbent (Wool-g-AOs). The wool-g-AOs were used for recovery of U(VI) from aqueous solutions. The simulated nuclear industry effluent was used for investigating the selectivity and industrial applicability of Wool-g-AOs. The adsorption of uranium(VI) on Wool-g-AOs was pH dependent. The Langmuir model fitted well with the equilibrium data. Kinetic data were fitted well to pseudo second order model.

  相似文献   

5.
The title goal was achieved using a DOWEX 50Wx8 cation exchange column saturated with La(OH)3 and ammonia solution as eluent. Hf, Ta and Lu were adsorbed on this column, whereas W remained in the solution. This chemical system may be used for fast on-line separations of element 106.  相似文献   

6.
7.
8.
9.
The hydrolysis of oligosaccharides by sulphonic ion exchangers has been performed in batch and in column experiments. The rate constants and selectivity are compared with the values obtained in homogeneous phase with H2SO4 and polystyrene sulphonic acid. The rate constants are lower in the presence of ion exchangers for dimers and the efficiency decreases as the degree of polymerization of the oligosaccharides increases, because of control by intraparticle diffusion. It is concluded that the ion exchanger process is rather inefficient for higher molecular weight solutes when compared with the corresponding polyelectrolyte or low molecular weight acid.  相似文献   

10.
11.
12.
The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of uraium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 35 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir and Freundlich isotherm. The thermodynamic parameters, ?(298 K), ? and ? were determined to be ?7.7, 21.5 k J mol?1 and 98.2 J mol?1 K?1, respectively, which demonstrated the sorption process of CMK-3 towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g CMK-3.  相似文献   

13.
The process of uranium precipitation from nitrate-sulfuric acid eluates by a 25% aqueous solution of ammonia was investigated. The effect of precipitation pH value on the impurity composition, particle size and bulk density of the yellow cake was studied. It was found, that precipitation should be carried out at pH 6.7 to obtain a high-purity concentrate. The method makes it possible to obtain a concentrate with an uranium content of 71.79%, a high bulk density of 970 kg m?3, an average particle diameter of 10.3 μm. The impurity composition of concentrate obtained at pH 6.7 meets the requirements of ASTM C967-13.  相似文献   

14.
15.
The oxidation of UO2 was investigated by TG, DSC and X-ray diffraction . UO2 samples were prepared by the reduction of UO3 at PH2 + PN2 = 100 + 50 mm Hg and 5°C min?1 up to 800°C. In order to obtain six UO2 samples with different preparative histories, UNH, UAH and ADU were used as starting materials and their thermal decomposition was carried out at 450–625°C for 0–9 h at an air flow rate of 100 ml min?1. α-UO3, γ-UO3, UO3 - 2 H2O, and their mixtures were obtained. The reduction of UO3 gave β-UO2+x with different x values from 0.030 to 0.055. The oxidation carried out at PO2 = 150 mm Hg was found to consist of oxygen uptake at room temperature. UO2 - U3O7 (Step I) and U3O7 → U3O8 (Step II). TG and DSC curves of the oxidation showed two plateaus and two exothermic peaks corresponding to Steps I and II. In the case of two of the samples, the DSC peak of Step II split into two substeps, which were assumed to be due to the different reactivities of U3O- formed from α-CO3 and that from other types of UO3. The increase in O/U ratio due to the oxygen uptake at room temperature changed from 0.010 to 0.042 except for a sample prepared from ADU which showed an extraordinarily large value of 0.445. TG curves showed an increase in O/U from room temperature to near 250°C for Step I and the plateau at 250–350°C where O/U was about 2.42, and showed a sharp increase in O/U above 350°C for Step II and the plateau above 100°C where O/U was 2.72–2.75. It is thought that the prepared UO2 had a defective structure with a large interstitial volume to accommodate the excess oxygen.  相似文献   

16.
The ability of oxygen-rich carbon spheres (CSs) produced by hydrothermal carbonization with the glucose has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of CSs were characterized by FT-IR and SEM. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CSs showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 25 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △(298 K), △ and △ were determined to be ?16.88, 12.09 kJ mol?1 and 197.87 J mol?1 K?1, respectively, which demonstrated the sorption process of CSs towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CSs could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 3.0 g CSs.  相似文献   

17.
Ferrocyanides of zirconium(IV) and tin(IV), antimonates of cerium(IV) and titanium(IV), and cerium(IV) tungstate, has been shown to be useful materials as inorganic ion exchangers in radio- and analytical chemistry. These materials are sufficiently stable towards high dose of γ-radiations. Attempt is made to study some structural aspects and possible exchange sites of these materials using different techniques like thermal, Mössbauer and infrared spectroscopy.  相似文献   

18.
Summary The gas chromatographic selectivity of K+, Zn2+, Ag+, Ni2+, and Cd2+ forms of a cation exchange packing have been determined for a set of 44 C2 to C8 alkenes. The retention characteristics of each ion are broken down into electronic (charge-transfer) and steric effects associated with the alkene sub-populations of each carbon number. Almost every pair of alkenes tested can be separated on at least one of these packings. Retention is much stronger on the ion exchangers than on metal-ion containing packings in gas-liquid chromatography, even with shorter columns and higher temperatures.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

19.
The potential of the biowaste Citrus limetta peels (CLP) was assessed for adsorption of uranium(VI) from uranyl nitrate solution. Maximum adsorption capacity of 75.33 mg g?1 was achieved at pH 4, showing drastic falls thereafter. This was attributed to the presence of UO2 2+, UO2OH+, (UO2)3(OH)5+ and (UO2)2(OH) 2 2+ ions. The peels were characterized for elucidating the role of functional groups and morphology on the sorption capacity. The isotherm studies revealed that Langmuir, Freundlich as well as Sips models give the best fit for the experimental data observing pseudo second order kinetics. The equilibrium was achieved in 90 min. The adsorption shows complex mechanism, took place by both physical and ion-exchange mechanism.  相似文献   

20.
Adsorptive behavior of uranium from aqueous solution on graphene oxide supported on sepiolite composites (GO@sepiolite composites) as a function of pH, ionic strength, temperature and initial uranium concentration was carried out by the batch techniques. GO@sepiolite composites was synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and potentiometric acid–base titration. According to XRD patterns and SEM images, the graphene oxide nanosheets were grafted on sepiolite surface successfully. The macroscopic results showed that the adsorption of uranium on GO@sepiolite composites was significantly depended on pH, whereas no effect of ionic strength on uranium adsorption at high pH and high ionic strength conditions was observed. The uptake equilibrium is best described by Langmuir adsorption isotherm, and the maximum adsorption capacity (Qe) of GO@sepiolite composites at pH 5.0 and T = 298 K were calculated to be 161.29 mg/g. Thermodynamic results indicated that the adsorption of uranium on GO@sepiolite composites is the spontaneous and exothermic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号