首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Tao Yang  Hui Li 《Queueing Systems》1994,16(1-2):83-96
In this paper, we study a retrial queueing model with the server subject to starting failures. We first present the necessary and sufficient condition for the system to be stable and derive analytical results for the queue length distribution as well as some performance measures of the system in steady state. We show that the general stochastic decomposition law forM/G/1 vacation models also holds for the present system. Finally, we demonstrate that a few well known queueing models are special cases of the present model and discuss various interpretations of the stochastic decomposition law when applied to each of these special cases.Partially supported by the Natural Sciences and Engineering Research Council of Canada, grant OGP0046415.Partially supported by internal research grant of Mount Saint Vincent University.  相似文献   

2.
This paper studies a discrete-time Geo/G/1 retrial queue where the server is subject to starting failures. We analyse the Markov chain underlying the regarded queueing system and present some performance measures of the system in steady-state. Then, we give two stochastic decomposition laws and find a measure of the proximity between the system size distributions of our model and the corresponding model without retrials. We also develop a procedure for calculating the distributions of the orbit and system size as well as the marginal distributions of the orbit size when the server is idle, busy or down. Besides, we prove that the M/G/1 retrial queue with starting failures can be approximated by its discrete-time counterpart. Finally, some numerical examples show the influence of the parameters on several performance characteristics. This work is supported by the DGINV through the project BFM2002-02189.  相似文献   

3.
The m/g/1 retrial queue with nonpersistent customers   总被引:1,自引:0,他引:1  
We consider anM/G/1 retrial queue in which blocked customers may leave the system forever without service. Basic equations concerning the system in steady state are established in terms of generating functions. An indirect method (the method of moments) is applied to solve the basic equations and expressions for related factorial moments, steady-state probabilities and other system performance measures are derived in terms of server utilization. A numerical algorithm is then developed for the calculation of the server utilization and some numerical results are presented.  相似文献   

4.
This paper presents a simple method for computing steady state probabilities at arbitrary and departure epochs of theM/G/1/K queue. The method is recursive and works efficiently for all service time distributions. The only input required for exact evaluation of state probabilities is the Laplace transform of the probability density function of service time. Results for theGI/M/1/K –1 queue have also been obtained from those ofM/G/1/K queue.  相似文献   

5.
We consider anM 2/G 2/1 type queueing system which serves two types of calls. In the case of blocking the first type customers can be queued whereas the second type customers must leave the service area but return after some random period of time to try their luck again. This model is a natural generalization of the classicM 2/G 2/1 priority queue with the head-of-theline priority discipline and the classicM/G/1 retrial queue. We carry out an extensive analysis of the system, including existence of the stationary regime, embedded Markov chain, stochastic decomposition, limit theorems under high and low rates of retrials and heavy traffic analysis.Visiting from: Department of Probability, Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia.  相似文献   

6.
We consider anM/G/1 retrial queue with infinite waiting space in which arriving customers who find the server busy join either (a) the retrial group with probabilityp in order to seek service again after a random amount of time, or (b) the infinite waiting space with probabilityq(=1–p) where they wait to be served. The joint generating function of the numbers of customers in the two groups is derived by using the supplementary variable method. It is shown that our results are consistent with known results whenp=0 orp=1.  相似文献   

7.
We consider a discrete-time Geo/G/1 retrial queue with preemptive resume, collisions of customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. Using generating function technique, the system state distribution as well as the orbit size and the system size distributions are studied. Some interesting and important performance measures are obtained. Besides, the stochastic decomposition property is investigated. Finally, some numerical examples are provided.  相似文献   

8.
Nam Kyoo Boots  Henk Tijms 《TOP》1999,7(2):213-220
This paper considers theM/M/c queue in which a customer leaves when its service has not begun within a fixed interval after its arrival. The loss probability can be expressed in a simple formula involving the waiting time probabilities in the standardM/M/c queue. The purpose of this paper is to give a probabilistic derivation of this formula and to outline a possible use of this general formula in theM/M/c retrial queue with impatient customers. This research was supported by the INTAS 96-0828 research project and was presented at the First International Workshop on Retrial Queues, Universidad Complutense de Madrid, Madrid, September 22–24, 1998.  相似文献   

9.
TheM/G/1 batch arrival retrial queue is studied by means of branching processes with immigration. We shall investigate this queue when traffic intensity is less than one, tends to one or is greater than one.  相似文献   

10.
In this paper, we consider a Geo/Geo/1 retrial queue with non-persistent customers and working vacations. The server works at a lower service rate in a working vacation period. Assume that the customers waiting in the orbit request for service with a constant retrial rate, if the arriving retrial customer finds the server busy, the customer will go back to the orbit with probability q (0≤q≤1), or depart from the system immediately with probability $\bar{q}=1-q$ . Based on the necessary and sufficient condition for the system to be stable, we develop the recursive formulae for the stationary distribution by using matrix-geometric solution method. Furthermore, some performance measures of the system are calculated and an average cost function is also given. We finally illustrate the effect of the parameters on the performance measures by some numerical examples.  相似文献   

11.
In this paper, we study the tail behavior of the stationary queue length of an M/G/1 retrial queue. We show that the subexponential tail of the stationary queue length of an M/G/1 retrial queue is determined by that of the corresponding M/G/1 queue, and hence the stationary queue length in an M/G/1 retrial queue is subexponential if the stationary queue length in the corresponding M/G/1 queue is subexponential. Our results for subexponential tails also apply to regularly varying tails, and we provide the regularly varying tail asymptotics for the stationary queue length of the M/G/1 retrial queue. AMS subject classifications: 60J25, 60K25  相似文献   

12.
This paper develops a diffusion-approximation model for a stableGI/G/s queue: The queue-length process in theGI/G/s queue is approximated by a diffusion process on the nonnegative real line. Some heuristics on the state space and the infinitesimal parameters of the approximating diffusion process are introduced to obtain an approximation formula for the steady-state queue-length distribution. It is shown that the formula is consistent with the exact results for theM/M/s andM/G/ queues. The accuracy of the approximations for principal congestion measures are numerically examined for some particular cases.  相似文献   

13.
The central model of this paper is anM/M/1 queue with a general probabilistic feedback mechanism. When a customer completes his ith service, he departs from the system with probability 1–p(i) and he cycles back with probabilityp(i). The mean service time of each customer is the same for each cycle. We determine the joint distribution of the successive sojourn times of a tagged customer at his loops through the system. Subsequently we let the mean service time at each loop shrink to zero and the feedback probabilities approach one in such a way that the mean total required service time remains constant. The behaviour of the feedback queue then approaches that of anM/G/1 processor sharing queue, different choices of the feedback probabilities leading to different service time distributions in the processor sharing model. This is exploited to analyse the sojourn time distribution in theM/G/1 queue with processor sharing.Some variants are also considered, viz., anM/M/1 feedback queue with additional customers who are always present, and anM/G/1 processor sharing queue with feedback.  相似文献   

14.
We consider a single server queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under the so called linear retrial policy. This model extends both the classical M/G/1 retrial queue with linear retrial policy as well as the M/G/1 queue with two phases of service and Bernoulli vacation model. We carry out an extensive analysis of the model.  相似文献   

15.
This paper is concerned with a discrete-time Geo/G/1 retrial queue with preferred, impatient customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for different performance measures. Besides, the stochastic decomposition property and the corresponding continuous-time queueing system are investigated. Finally, some numerical examples are provided to illustrate the effect of priority and impatience on several performance characteristics of the system.  相似文献   

16.
An M/G/1 retrial queue with two-phase service and feedback is studied in this paper, where the server is subject to starting failures and breakdowns during service. Primary customers get in the system according to a Poisson process, and they will receive service immediately if the server is available upon arrival. Otherwise, they will enter a retrial orbit and are queued in the orbit in accordance with a first-come-first-served (FCFS) discipline. Customers are allowed to balk and renege at particular times. All customers demand the first “essential” service, whereas only some of them demand the second “multi-optional” service. It is assumed that the retrial time, service time and repair time of the server are all arbitrarily distributed. The necessary and sufficient condition for the system stability is derived. Using a supplementary variable method, the steady-state solutions for some queueing and reliability measures of the system are obtained.  相似文献   

17.
We consider anM/M/1 retrial queueing system in which the retrial time has a general distribution and only the customer at the head of the queue is allowed to retry for service. We find a necessary and sufficient condition for ergodicity and, when this is satisfied, the generating function of the distribution of the number of customers in the queue and the Laplace transform of the waiting time distribution under steady-state conditions. The results agree with known results for special cases.Supported by KOSEF 90-08-00-02.  相似文献   

18.
Atencia  Ivan  Moreno  Pilar 《Queueing Systems》2004,48(1-2):5-21
We consider a discrete-time Geo/G/1 retrial queue in which the retrial time has a general distribution and the server, after each service completion, begins a process of search in order to find the following customer to be served. We study the Markov chain underlying the considered queueing system and its ergodicity condition. We find the generating function of the number of customers in the orbit and in the system. We derive the stochastic decomposition law and as an application we give bounds for the proximity between the steady-state distributions for our queueing system and its corresponding standard system. Also, we develop recursive formulae for calculating the steady-state distribution of the orbit and system sizes. Besides, we prove that the M/G/1 retrial queue with general retrial times can be approximated by our corresponding discrete-time system. Finally, we give numerical examples to illustrate the effect of the parameters on several performance characteristics.  相似文献   

19.
This paper analyses a discrete-time Geo/G/1 retrial queue with batch arrivals in which individual arriving customers have a control of admission. We study the underlying Markov chain at the epochs immediately after the slot boundaries making emphasis on the computation of its steady-state distribution. To this end we employ numerical inversion and maximum entropy techniques. We also establish a stochastic decomposition property and prove that the continuous-time M/G/1 retrial queue with batch arrivals and control of admission can be approximated by our discrete-time system. The outcomes agree with known results for special cases.  相似文献   

20.
We consider anM/G/1 queue with FCFS queue discipline. We present asymptotic expansions for tail probabilities of the stationary waiting time when the service time distribution is longtailed and we discuss an extension of our methods to theM [x]/G/1 queue with batch arrivals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号