首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We initiate the study of outer-2-independent domination in graphs. An outer-2-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)?D has a neighbor in D and the maximum vertex degree of the subgraph induced by V(G)?D is at most one. The outer-2-independent domination number of a graph G is the minimum cardinality of an outer-2-independent dominating set of G. We show that if a graph has minimum degree at least two, then its outer-2-independent domination number equals the number of vertices minus the 2-independence number. Then we investigate the outer-2-independent domination in graphs with minimum degree one. We also prove the Vizing-type conjecture for outer-2-independent domination and disprove the Vizing-type conjecture for outer-connected domination.  相似文献   

2.
Let γ(G) and i(G) be the domination number and the independent domination number of G, respectively. Rad and Volkmann posted a conjecture that i(G)/γ(G) ≤ Δ(G)/2 for any graph G, where Δ(G) is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than Δ(G)/2 are provided as well.  相似文献   

3.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a total dominating set if D is dominating, and the induced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total dominating set of G. A set DV(G) is a total outer-connected dominating set if D is total dominating, and the induced subgraph G[V(G)−D] is a connected graph. The total outer-connected domination number of G is the minimum cardinality of a total outer-connected dominating set of G. We characterize trees with equal total domination and total outer-connected domination numbers. We give a lower bound for the total outer-connected domination number of trees and we characterize the extremal trees.  相似文献   

4.
Let G be a graph with vertex set V(G). For any integer k ≥ 1, a signed total k-dominating function is a function f: V(G) → {?1, 1} satisfying ∑xN(v)f(x) ≥ k for every vV(G), where N(v) is the neighborhood of v. The minimum of the values ∑vV(G)f(v), taken over all signed total k-dominating functions f, is called the signed total k-domination number. In this note we present some new sharp lower bounds on the signed total k-domination number of a graph. Some of our results improve known bounds.  相似文献   

5.
Let G = (V, E) be a graph. A set \({S\subseteq V}\) is a restrained dominating set if every vertex in V ? S is adjacent to a vertex in S and to a vertex in V ? S. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is claw-free with minimum degree at least two and \({G\notin \{C_{4},C_{5},C_{7},C_{8},C_{11},C_{14},C_{17}\}}\) , then \({\gamma_{r}(G)\leq \frac{2n}{5}.}\)  相似文献   

6.
A total weighting of a graph G is a mapping ? that assigns to each element zV (G)∪E(G) a weight ?(z). A total weighting ? is proper if for any two adjacent vertices u and v, ∑ eE(u) ?(e)+?(u)≠∑ eE(v) ?(e)+?(v). This paper proves that if each edge e is given a set L(e) of 3 permissible weights, and each vertex v is given a set L(v) of 2 permissible weights, then G has a proper total weighting ? with ?(z) ∈ L(z) for each element zV (G)∪E(G).  相似文献   

7.
Let G=(V,E) be a graph. A subset SV is a dominating set of G, if every vertex uVS is dominated by some vertex vS. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. For the generalized Petersen graph G(n), Behzad et al. [A. Behzad, M. Behzad, C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Mathematics 308 (2008) 603-610] proved that and conjectured that the upper bound is the exact domination number. In this paper we prove this conjecture.  相似文献   

8.
Let Γ t ? (G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a regular graph G and characterize the extremal graphs attaining the bound. Thus, we answer an open problem by Yan, Yang and Shan  相似文献   

9.
A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all vV and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σ vV f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ? V(G) is said to be irredundant if each xX dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The irredundance number ir (G) is the cardinality of a smallest maximal irredundant set of G. We prove the bound λb(G) ≤ 3 ir(G)/2 for any graph G and show that equality is possible for all even values of ir (G). We also consider broadcast domination as an integer programming problem, the dual of which provides a lower bound for λb.  相似文献   

10.
Let G = (V,A) be a digraph and k ≥ 1 an integer. For u, vV, we say that the vertex u distance k-dominate v if the distance from u to v at most k. A set D of vertices in G is a distance k-dominating set if each vertex of V D is distance k-dominated by some vertex of D. The distance k-domination number of G, denoted by γ k (G), is the minimum cardinality of a distance k-dominating set of G. Generalized de Bruijn digraphs G B (n, d) and generalized Kautz digraphs G K (n, d) are good candidates for interconnection networks. Denote Δ k := (∑ j=0 k d j )?1. F. Tian and J. Xu showed that ?nΔ k ? γ k (G B (n, d)) ≤?n/d k? and ?nΔ k ? ≤ γ k (G K (n, d)) ≤ ?n/d k ?. In this paper, we prove that every generalized de Bruijn digraph G B (n, d) has the distance k-domination number ?nΔ k ? or ?nΔ k ?+1, and the distance k-domination number of every generalized Kautz digraph G K (n, d) bounded above by ?n/(d k?1+d k )?. Additionally, we present various sufficient conditions for γ k (G B (n, d)) = ?nΔ k ? and γ k (G K (n, d)) = ?nΔ k ?.  相似文献   

11.
In this paper, we study a generalization of the paired domination number. Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k-distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The k-distance paired domination number is the cardinality of a smallest k-distance paired dominating set of G. We investigate properties of the k-distance paired domination number of a graph. We also give an upper bound and a lower bound on the k-distance paired domination number of a non-trivial tree T in terms of the size of T and the number of leaves in T and we also characterize the extremal trees.  相似文献   

12.
13.
Let G=(V,E) be a connected graph. A dominating set S of G is a weakly connected dominating set of G if the subgraph (V,E∩(S×V)) of G with vertex set V that consists of all edges of G incident with at least one vertex of S is connected. The minimum cardinality of a weakly connected dominating set of G is the weakly connected domination number, denoted . A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. In this paper, we show that . Properties of connected graphs that achieve equality in these bounds are presented. We characterize bipartite graphs as well as the family of graphs of large girth that achieve equality in the lower bound, and we characterize the trees achieving equality in the upper bound. The number of edges in a maximum matching of G is called the matching number of G, denoted α(G). We also establish that , and show that for every tree T.  相似文献   

14.
A dominating set of a graph G=(V,E) is a subset SV such that every vertex not in S is adjacent to at least one vertex of S. The domination number of G is the cardinality of a smallest dominating set. The global domination number, γg(G), is the cardinality of a smallest set S that is simultaneously a dominating set of both G and its complement . Graphs for which γg(Ge)>γg(G) for all edges eE are characterized, as are graphs for which γg(Ge)<γg(G) for all edges eE whenever is disconnected. Progress is reported in the latter case when is connected.  相似文献   

15.
In this paper the definition of domination is generalized to the case that the elements of the traffic matrices may have negative values. It is proved that D3 dominates D3 + λ(D2 ? D1) for any λ ? 0 if D1 dominates D2. Let U(D) be the set of all the traffic matrices that are dominated by the traffic matrix D. It is shown that U(D) and U(D) are isomorphic. Besides, similar results are obtained on multi-commodity flow problems. Furthermore, the results are the generalized to integral flows.  相似文献   

16.
In this paper, we introduce a new graph parameter called the domination defect of a graph. The domination number γ of a graph G is the minimum number of vertices required to dominate the vertices of G. Due to the minimality of γ, if a set of vertices of G has cardinality less than γ then there are vertices of G that are not dominated by that set. The k-domination defect of G is the minimum number of vertices which are left un-dominated by a subset of γ - k vertices of G. We study different bounds on the k-domination defect of a graph G with respect to the domination number, order, degree sequence, graph homomorphisms and the existence of efficient dominating sets. We also characterize the graphs whose domination defect is 1 and find exact values of the domination defect for some particular classes of graphs.  相似文献   

17.
Let G be a graph and v be any vertex of G. Then the neighborhood contracted graphGv of G, with respect to the vertex v, is the graph with vertex set V ? N(v), where two vertices u,wV ? N(v) are adjacent in Gv if either w = v and u is adjacent to any vertex of N(v) in G or u,w ? N[v] and u,w are adjacent in G. The properties of the neighborhood contracted graphs are discussed in this paper. The neighborhood contraction in some special class of graphs, the domination in a graph and the neighborhood contracted graphs are discussed in the paper.  相似文献   

18.
A vertex u in an undirected graph G = (V, E) is said to dominate all its adjacent vertices and itself. A subset D of V is a dominating set in G if every vertex in G is dominated by a vertex in D, and is a minimum dominating set in G if no other dominating set in G has fewer vertices than D. The domination number of G is the cardinality of a minimum dominating set in G.The problem of determining, for a given positive integer k and an undirected graph G, whether G has a dominating set D in G satisfying ¦D¦ ≤ k, is a well-known NP-complete problem. Cockayne have presented a linear time algorithm for finding a minimum dominating set in a tree. In this paper, we will present a linear time algorithm for finding a minimum dominating set in a series-parallel graph.  相似文献   

19.
Let B be a 3-block of a finite group G with a defect group D. In this paper, we are mainly concerned with the number of characters in a particular block, so we shall use Isaacs' approach to block structure. We consider the block B of a group G as a union of two sets, namely a set of irreducible ordinary characters of G having cardinality k(B) and a set of irreducible Brauer characters of G having cardinality l(B). We calculate k(B) and l(B) provided that D is normal in G and D■x, y, z|x~(3n)=y~(3m)= z~3= [x, z] = [y, z] = 1, [x, y] = z(n m ≥ 2).  相似文献   

20.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号