首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The temperature dependence of the excess conductivity Δσ for Δσ = A(1 ? T/T*)exp(Δ*/T) (YBCO) epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resistance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the temperature dependence of the excess conductivity is adequately described by the relationship Δσ = A(1 ? T/T*)exp(Δ*/T). The pseudogap width and its temperature dependence are calculated under the assumption that the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at temperatures well above the critical temperature T c of superconductivity. The results obtained are compared with the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical temperature T c is discussed.  相似文献   

2.
Static magnetic susceptibility χ(T) in the normal state (Tc ≤ T ≤ 400 K) and specific heat C(T) near temperature Tc of the transition to the superconducting state are experimentally studied for a series of fine crystalline samples of high-temperature YBa2Cu3Oy superconductor, having y and Tc close to optimal but differing in the degree of nanoscale structural disordering. It is shown that under the influence of structural disordering, there is enhancement of anomalous pseudogap behavior of the studied characteristics and a significant increase in the width of the pseudogap.  相似文献   

3.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

4.
Magnetization M(H,T) in magnetic fields H up to 90 kOe and at temperatures 2 K ≤ T < T c (where Tc is the superconducting transition temperature), along with magnetic susceptibility χ(T) in the normal state T c < T < 400 K for optimally oxygen-doped samples of YBa2Cu3O6.92 with varying degrees of defects in the crystal structure, are studied to determine the influence of structural inhomogeneity on the electron systems characteristics of cuprate superconductors. It is shown that the existence of structural inhomogeneity of samples leads to the manifestation of peculiarities appropriate to pseudogap regime in their properties.  相似文献   

5.
The temperature dependences of magnetization higher harmonics were studied experimentally in single-domain YBa2Cu3O7?x samples above T c . YBa2Cu3O7?x magnetization nonlinearity was found in different samples up to temperatures T = 103–112 K, which is much higher than the temperature of transition into the superconducting state of the given compound. The observed specific feature of YBa2Cu3O7?x magnetization is associated with the occurrence of pseudogap state in this compound.  相似文献   

6.
Oxygen dopants are essential for tuning the electronic properties of the cuprate superconductors Bi_2Sr_2Ca_(n-1)Cu_nO_(2n+4+δ).Here,we study an optimally doped Bi_2Sr_(2-x)La_xCuO_(6+δ)and an overdoped Bi_(2-y)Pb_ySr_2CuO_(6+δ)by scanning tunneling microscopy and spectroscopy(STM/STS).Based on the characteristic features of local STS,three forms of oxygen dopants are identified:interstitial oxygen atoms on the SrO layers,oxygen vacancies on the SrO layers,and interstitial oxygen atoms on the BiO layers.In both samples,the first form dominates the number of oxygen dopants.From the extracted spatial distribution of the oxygen dopants,we calculate the dopant concentrations and estimate the average hole carrier density.The magnitudes of the electronic pseudogap state in both samples are inhomogeneously distributed in space.The statistical analysis on the spatial distributions of the oxygen dopants and the pseudogap magnitude demonstrates that the doped oxygen atoms on the SrO layers tend to suppress the nearby pseudogap magnitude.  相似文献   

7.
The mechanism of hole carrier generation is considered in the framework of a model assuming the formation of negative U centers (NUCs) in HTSC materials under doping. The calculated dependences of carrier concentration on the doping level and temperature are in quantitative agreement with experiment. An explanation is proposed for the pseudogap and 60 K phases in YBa2Cu3O6+δ. It is assumed that a pseudogap is of superconducting origin and arises at temperature T* > Tc∞ > Tc in small nonpercolating clusters as a result of strong fluctuations in the occupancy of NUCs (Tc∞ and Tc are the superconducting transition temperatures of an infinitely large and finite NUC clusters, respectively). The T*(δ) and Tc(δ) dependences calculated for YBa2Cu3O6+δ correlate with experimental dependences. In accordance with the model, the region between T*(δ) and Tc(δ) is the range of fluctuations in which finite nonpercolation clusters fluctuate between the superconducting and normal states due to NUC occupancy fluctuations.  相似文献   

8.
Single-crystal samples of the Bi2 + xSr2 ? x ? yCu1 + yO6 + δ system revealed anomalous (negative) thermal expansion in the temperature range 10–20 K. Magnetic fields of 1–3 T were found to strongly affect the position and width of the anomaly region. A thermal-expansion singularity was detected at temperatures T≈30–50 K, which may be related to the formation of a pseudogap.  相似文献   

9.
Key properties of the cuprates, such as the pseudogap observed above the criticaltemperature Tc, remain highlydebated. Given their importance, we recently proposed a novel mechanism based on theBose-like condensation of mutually interacting Cooper pairs [W. Sacks, A. Mauger, Y. Noat,Supercond. Sci. Technol. 28, 105014 (2015)]. In this work, we calculate thetemperature dependent DOS using this model for different doping levels from underdoped tooverdoped. In all situations, due to the presence of excited pairs, a pseudogap is foundabove Tc while the normal DOSis recovered at T?, the pair formation temperature. Asimilar behavior is found as a function of magnetic field, crossing a vortex, where apseudogap exists in the vortex core. We show that the precise DOS shape depends oncombined pair (boson) and quasiparticle (fermion) excitations, allowing for a deeperunderstanding of the SC to the PG transition.  相似文献   

10.
An HTSC model, in which the interaction of valence-band electrons with diatomic negative U centers is assumed to be responsible for the anomalous properties of HTSC compounds, is proposed and used to explain the nature of the pseudogap and pseudogap anomalies (including the giant Nernst effect, the anomalous diamagnetism above T c, the “transfer” of the optical spectral weight). For YBa2Cu3O6 + δ, the pseudogap opening temperature T* and T c are calculated as functions of the degree of doping δ. The calculated dependences agree quantitatively with the experimental dependences without using scale fitting parameters. The good agreement between the calculated and experimental results can serve as an argument for the proposed HTSC model.  相似文献   

11.
Phonon thermal conductivities κ22 (?TC1) and κ33 (? TC3) of tellurium-doped bismuth with an electron concentration in the range 1.8 × 1019nL ≤ 1.4 × 1020 cm?3 were studied in the temperature interval 2 < T < 300 K. The temperature dependence of the phonon thermal conductivity obtained on doped bismuth samples of both orientations exhibits two maxima, one at a low temperature and the other at a high temperature. The effect of various phonon relaxation mechanisms on the dependence of both phonon thermal conductivity maxima on temperature, impurity concentration, and electron density is studied.  相似文献   

12.
It has been shown that the strong coupling model taking into account a rise in the spin antiferromagnetic insulating state explains the doping dependence of the topology and shape of the Fermi contour of superconducting cuprates. Hole pockets with shadow bands in the second Brillouin zone form the Fermi contour with perfect ordinary and mirror nesting, which ensures the coexistence of orbital antiferromagnetism and superconductivity with a large pair momentum for T < TC. The weak pseudogap region (T* < T < T*) corresponds to the orbital antiferromagnetic ordering, which coexists with the incoherent state of superconducting pairs with large momenta in the strong pseudogap region (TC < T < T*).  相似文献   

13.
The crystal structure of samples in the (CuInSe2)1 ? x (2MnSe) x system at room temperature and their magnetic susceptibility in the temperature range 77–1000 K are investigated. It is established that compositions with concentrations 0≤ x ≤ 0.2 form solid solutions with a tetragonal structure, space group I \(\bar 4\)2d (122). The specific magnetic susceptibility χ of samples with 0.1 ≤ x ≤ 0.4 at 77 K lies in the range 9 × 10?4?1.6 × 10t-3cm3/g. The temperature dependence of the inverse magnetic susceptibility of the sample with x = 0.4 suggests the presence of a component with antiferromagnetic ordering and a reliably measured Néel temperature that is characteristic of MnSe. The dependences χ = f(T) of the compositions with x = 0.1, 0.2, 0.3, and 0.4 indicate the occurrence of magnetic phase transitions with a change in the spin state.  相似文献   

14.
The dependence of the superconducting (Meissner) phase volume V m on the YBa2Cu3O6+δ doping level was studied. It was found that V m monotonically decreases as the doping level is lowered and vanishes at the same value of δ ~ 0.3 as Tc does. It was concluded that the Tc decrease and the increase in the pseudogap formation temperature T* as the doping level is lowered are caused by a decrease in the average size of superconducting clusters. This conclusion suggests an extraordinary superconductivity mechanism in HTSC.  相似文献   

15.
The temperature dependence of the electrical resistivity ρ(T) for ceramic samples of LaMnO3 + δ (δ = 0.100–0.154) are studied in the temperature range T = 15–350 K, in magnetic fields of 0–10 T, and under hydrostatic pressures P of up to 11 kbar. It is shown that, above the ferromagnet-paramagnet transition temperature of LaMnO3 + δ, the dependence ρ(T) of this compound obeys the Shklovskii-Efros variable-range hopping conduction: ρ(T) = ρ0(T)exp[(T 0/T)1/2], where ρ0(T) = AT 9/2 (A is a constant). The density of localized states g(?) near the Fermi level is found to have a Coulomb gap Δ and a rigid gap γ(T). The Coulomb gap Δ assumes values of 0.43, 0.46, and 0.48 eV, and the rigid gap satisfies the relationship γ(T) ≈ γ(T v)(T/T v)1/2, where T v is the temperature of the onset of variable-range hopping conduction and γ(T v) = 0.13, 0.16, and 0.17 eV for δ = 0.100, 0.125, and 0.154, respectively. The carrier localization lengths a = 1.7, 1.4, and 1.2 Å are determined for the same values of δ. The effect of hydrostatic pressure on the variable-range hopping conduction in LaMnO3 + δ with δ = 0.154 is analyzed, and the dependences Δ(P) and γv(P) are obtained.  相似文献   

16.
The pseudogap phenomenon in underdoped and optimally oxygen-doped high-temperature superconductors (HTSCs) of the Y1Ba2Cu3Ox system is explained from a unified point of view within the model of negative U centers. It is shown that the pseudogap features of conductivity are not related directly to the superconductivity but arise due to the existence of statistical interaction of negative U centers with valence-band holes. Specifically due to this interaction, the hole density in the valence band does not remain constant. It differently changes with temperature for different mutual positions of the Fermi level and the valence band top. These differences lead to different temperature dependences of conductivity for underdoped and optimally doped samples.  相似文献   

17.
We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5Te0.5 single crystals grown by self-flux and Bridgman methods. The lowest values of the susceptibility in thenormal state, the highest transition temperature T c of 14.4 K, and the largest heat-capacity anomaly at T c were obtained for pure (oxygen-free) samples. The criticalcurrent density j c of 8.6 × 104A/cm2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the anion sites. The samples containing an impurity phase of Fe3O4 show increased j c up to2.3 × 105A/cm2 due to additional pinning centers. The upper critical field\(H_{c2}\)of ~500 kOe is estimated from the resistivity studyin magnetic fields parallel to the c-axis using a criterion of a 50%drop of the normal state resistivity R n . The anisotropy ofthe upper critical fieldγ H c2 =H ab c2/H c2 c reaches a value ~6 at\(T\longrightarrow T_c\). Extremely low values of the residualSommerfeld coefficient \(\gamma_r\) of about 1 mJ/mol K2,compared to the normal state Sommerfeld coefficient γ n = 25mJ/mol K2 for pure samples indicate a high volume fraction of thesuperconducting phase (up to 97%). The electronic contribution to the specific heat in thesuperconducting state is well described within a single-band BCS model with a temperature dependent gapΔ(0 K) = 27(1) K. A broad cusp-like anomaly in the electronic specific heat observed at low temperatures in samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the Fe2+ ions at the 2c sites. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.  相似文献   

18.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

19.
The temperature dependences of the third and other higher magnetization harmonics for YBa2Cu3O7 ? x textured polycrystals are experimentally investigated in the temperature range 77–120 K. It is revealed that the magnetization of the YBa2Cu3O7 ? x textured polycrystals exhibits a nonlinear behavior up to temperatures considerably higher than the superconducting transition temperature. The observed nonlinearity of the magnetization of the YBa2Cu3O7 ? x textured polycrystals is attributed to the pseudogap state that appears for this compound at a temperature T ~ 102 K.  相似文献   

20.
The temperature dependences of the residual magnetization in narrow-band manganites (Pr0.67Ca0.33MnO3, Sm0.55Sr0.45Mn18O3, Sm0.55Sr0.45Mn16O3, and (NdEu)0.55Sr0.45Mn18O3) have been studied. All compounds studied are characterized by a fairly high residual magnetization M R (about 0.5 μB/Mn) at 4.2 K, which vanishes upon sample heating to the temperature T RE ≈ 30–35 K, which is much lower than the temperature T C of the ferromagnetic transition. However, upon magnetization of the samples at T RE < T < T C , the residual magnetization (smaller in magnitude) remains up to T C . For the composition (NdEu)0.55Sr0.45Mn18O3, the residual magnetization remains at T < T C , independent of the temperature of magnetization. The disappearance of the residual magnetization found at intermediate temperatures is apparently related to the destruction of the magnetic field-induced ferromagnetic ordering (which contains an additional contribution of the rare-earth sublattice).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号