首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wei Cao 《Acta Appl Math》2010,112(3):275-281
Let N q denote the number of solutions of the generalized Markoff-Hurwitz-type equation
$a_1x_1^{m_1}+a_2x_2^{m_2}+\cdots+a_nx_n^{m_n}=b\,x_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$
over the finite field \(\mathbb{F}_{q}\), where m i ,k i are positive integers\(,a_{i},b\in \mathbb{F}_{q}^{*}\) for i=1,…,n and n≥2. By introducing and applying augmented degree matrix, we show that if \(\gcd(\sum_{i=1}^{n}k_{i}m/m_{i}-m,q-1)=1\) where m=m 1 ??? m n then N q =q n?1+(?1)n?1. This partially solves one of Carlitz’s problems and generalizes as well as simplifies some results of Baoulina about these type equations.
  相似文献   

2.
In this paper, we show that the truncated binomial polynomials defined by \(P_{n,k}(x)={\sum }_{j=0}^{k} {n \choose j} x^{j}\) are irreducible for each k≤6 and every nk+2. Under the same assumption nk+2, we also show that the polynomial P n,k cannot be expressed as a composition P n,k (x) = g(h(x)) with \(g \in \mathbb {Q}[x]\) of degree at least 2 and a quadratic polynomial \(h \in \mathbb {Q}[x]\). Finally, we show that for k≥2 and m,nk+1 the roots of the polynomial P m,k cannot be obtained from the roots of P n,k , where mn, by a linear map.  相似文献   

3.
In 1968 S.M. Ulam proposed the problem: “When is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?’’. In 1978 according to P.M. Gruber this kind of problems is of particular interest in probability theory and in the case of functional equations of different types. In 1997 W. Schuster established a new vector quadratic identity on the basis of the well-known Euler type theorem on quadrilaterals: If ABCD is a quadrilateral and M, N are the mid-points of the diagonals AC, BD as well as A′, B′, C′, D′ are the mid-points of the sides AB, BC, CD, DA, then |AB|2 + |BC|2 + |CD|2 + |DA|2 = 2|A′C′|2 + 2|B′D′|2 + 4|MN|2. Employing in this paper the above geometric identity we introduce the new Euler type quadratic functional equation
$\begin{array}{l}2{[}Q(x_{0} - x_{1}+Q(x_{1}-x_{2})+Q(x_{2}- x_{3})+Q(x_{3}-x_{0}){]}\\\qquad = Q(x_{0}-x_{1}-x_{2}+x_{3})+Q(x_{0} + x_{1}-x_{2}-x_{3})+2Q(x_{0}-x_{1}+ x_{2}-x_{3})\end{array}$
for all vectors (x0, x1, x2, x3) X4, with X and Y linear spaces. For every xR set Q(x) = x2. Then the mapping Q : XY is quadratic. Note also that if Q : RR is quadratic, then we have Q(x) = Q(1)x2. Besides note that the geometric interpretation of the special example
$\begin{array}{l}2{[}(x_{0} - x_{1})^{2}+ (x_{1}-x_{2})^{2}+ (x_{2}-x_{3})^{2}+(x_{3}-x_{0})^{2}{]}\\\qquad = (x_{0}-x_{1}-x_{2} + x_{3})^{2}+(x_{0} + x_{1}-x_{2}-x_{3})^{2} + 2(x_{0}-x_{1}+ x_{2}-x_{3})^{2}\end{array}$
leads to the above-mentioned Euler type theorem on quadrilaterals ABCD with position vectors x0, x1, x2, x3 of vertices A, B, C, D, respectively. Then we solve the Ulam stability problem for the afore-mentioned equation, with non-linear Euler type quadratic mappings Q : XY.
  相似文献   

4.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

5.
We count the number S(x) of quadruples \( {\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right)} \in \mathbb{Z}^{4} \) for which
$ p = x^{2}_{1} + x^{2}_{2} + x^{2}_{3} + x^{2}_{4} \leqslant x $
is a prime number and satisfying the determinant condition: x 1 x 4???x 2 x 3?=?1. By means of the sieve, one shows easily the upper bound S(x)???x/log x. Under a hypothesis about prime numbers, which is stronger than the Bombieri–Vinogradov theorem but is weaker than the Elliott–Halberstam conjecture, we prove that this order is correct, that is S(x)???x/log x.
  相似文献   

6.
We consider the problem of searching for a best LAD-solution of an overdetermined system of linear equations Xa=z, X∈?m×n, mn, \(\mathbf{a}\in \mathbb{R}^{n}, \mathbf {z}\in\mathbb{R}^{m}\). This problem is equivalent to the problem of determining a best LAD-hyperplane x?a T x, x∈? n on the basis of given data \((\mathbf{x}_{i},z_{i}), \mathbf{x}_{i}= (x_{1}^{(i)},\ldots,x_{n}^{(i)})^{T}\in \mathbb{R}^{n}, z_{i}\in\mathbb{R}, i=1,\ldots,m\), whereby the minimizing functional is of the form
$F(\mathbf{a})=\|\mathbf{z}-\mathbf{Xa}\|_1=\sum_{i=1}^m|z_i-\mathbf {a}^T\mathbf{x}_i|.$
An iterative procedure is constructed as a sequence of weighted median problems, which gives the solution in finitely many steps. A criterion of optimality follows from the fact that the minimizing functional F is convex, and therefore the point a ?∈? n is the point of a global minimum of the functional F if and only if 0?F(a ?).
Motivation for the construction of the algorithm was found in a geometrically visible algorithm for determining a best LAD-plane (x,y)?αx+βy, passing through the origin of the coordinate system, on the basis of the data (x i ,y i ,z i ),i=1,…,m.  相似文献   

7.
For a hyperbolic α-stable process in the hyperbolic space \(\mathbb {H}^{d}, d\ge 2\), we prove that the mean exit time from a halfspace \(H(a)=\{x_{d}>a\}\subset \mathbb {H}^{d} \) is equal to \(\mathbb {E}^{x} \tau _{H(a)} = c(\alpha , d) \delta ^{\alpha /2}_{H(a)} (x),\) where δD(x) is the (hyperbolic) distance of x to Dc. Based on this exact result we provide a sharp estimate of the mean exit time from a hyperbolic ball B(x0,R) of radius R and center x0: \(\mathbb {E}^{x}\tau _{B(x_{0},R)}\approx (\delta _{B(x_{0},R)}(x) \tanh R)^{\alpha /2}, x\in \mathbb {H}^{d}\). By usual isomorphism argument the same estimate holds in any other model of real hyperbolic space.  相似文献   

8.
Given a continuous function\(f:\mathbb{S}^{n - 1} \to \mathbb{R}^m \) andn ?m + 1 pointsp 1, …,p n?m + 1 ε\(p_1 ,...,p_{n - m + 1} \in \mathbb{S}^{n - 1} \), does there exist a rotation ? εSO(n) such thatf(?(p 1)) = … =f(?(p n?m+1))? We give a negative answer to this question form = 1 ifn ε {61, 63, 65} orn≥67 and form=2 ifn≥5.  相似文献   

9.
In this article, we study the equation
$\frac{\partial }{\partial t}u(x,t)=c^{2}\Diamond _{B}^{k}u(x,t)$
with the initial condition u(x,0)=f(x) for x∈? n + . The operator ? B k is named to be Bessel diamond operator iterated k-times and is defined by
$\Diamond _{B}^{k}=\bigl[(B_{x_{1}}+B_{x_{2}}+\cdots +B_{x_{p}})^{2}-(B_{x_{p+1}}+\cdots +B_{x_{p+q}})^{2}\bigr]^{k},$
where k is a positive integer, p+q=n, \(B_{x_{i}}=\frac{\partial ^{2}}{\partial x_{i}^{2}}+\frac{2v_{i}}{x_{i}}\frac{\partial }{\partial x_{i}},\) 2v i =2α i +1,\(\;\alpha _{i}>-\frac{1}{2}\), x i >0, i=1,2,…,n, and n is the dimension of the ? n + , u(x,t) is an unknown function of the form (x,t)=(x 1,…,x n ,t)∈? n + ×(0,∞), f(x) is a given generalized function and c is a positive constant (see Levitan, Usp. Mat. 6(2(42)):102–143, 1951; Y?ld?r?m, Ph.D. Thesis, 1995; Y?ld?r?m and Sar?kaya, J. Inst. Math. Comput. Sci. 14(3):217–224, 2001; Y?ld?r?m, et al., Proc. Indian Acad. Sci. (Math. Sci.) 114(4):375–387, 2004; Sar?kaya, Ph.D. Thesis, 2007; Sar?kaya and Y?ld?r?m, Nonlinear Anal. 68:430–442, 2008, and Appl. Math. Comput. 189:910–917, 2007). We obtain the solution of such equation, which is related to the spectrum and the kernel, which is so called Bessel diamond heat kernel. Moreover, such Bessel diamond heat kernel has interesting properties and also related to the kernel of an extension of the heat equation.
  相似文献   

10.
We consider a class of Hamilton Jacobi equations (in short, HJE) of type
$ u_t + \frac{1}{2}\big(|u_{x_1}|^2+ \cdots +|u_{x_{n-1}}|^2\big) + \frac{\mathrm{e}^u}{m}|u_{x_n}|^m=0, $
in ? n ×??+? and m?>?1, with bounded, Lipschitz continuous initial data. We give a Hopf-Lax type representation for the value function and also characterize the set of minimizing paths. It is shown that the minimizing paths in the representation of value function need not be straight lines. Then we consider HJE with Hamiltonian decreasing in u of type
$ u_t + H_1\big(u_{x_1},\ldots,u_{x_i}\big) + \mathrm{e}^{-u}H_2\big(u_{x_{i+1}},\ldots, u_{x_n}\big)=0 $
where H 1,H 2 are convex, homogeneous of degree n,m?>?1 respectively and the initial data is bounded, Lipschitz continuous. We prove that there exists a unique viscosity solution for this HJE in Lipschitz continuous class. We also give a representation formula for the value function.
  相似文献   

11.
A compactly supported radially symmetric function \(\varPhi :\Bbb{R}^{d}\to \Bbb{R}\) is said to have Sobolev regularity k if there exist constants BA>0 such that the Fourier transform of Φ satisfies
$A\bigl(1+\Vert\omega\Vert ^2\bigr)^{-k} \leq\widehat{\varPhi }(\omega )\leq B\bigl (1+\Vert\omega\Vert ^2\bigr)^{-k},\quad\omega\in \Bbb{R}^d.$
Such functions are useful in radial basis function methods because the resulting native space will correspond to the Sobolev space \(W_{2}^{k}(\Bbb{R}^{d})\). For even dimensions d and integers kd/4, we construct piecewise polyharmonic radial functions with Sobolev regularity k. Two families are actually constructed. In the first, the functions have k nontrivial pieces, while in the second, exactly one nontrivial piece. We also explain, in terms of regularity, the effect of restricting Φ to a lower dimensional space \(\Bbb{R}^{d-2\ell}\) of the same parity.
  相似文献   

12.
Let {X n ; n≥1} be a sequence of independent copies of a real-valued random variable X and set S n =X 1+???+X n , n≥1. This paper is devoted to a refinement of the classical Kolmogorov–Marcinkiewicz–Zygmund strong law of large numbers. We show that for 0<p<2,
$\sum_{n=1}^{\infty}\frac{1}{n}\biggl(\frac{|S_{n}|}{n^{1/p}}\biggr)<\infty\quad \mbox{almost surely}$
if and only if
$\begin{cases}\mathbb{E}|X|^{p}<\infty &; \mbox{if }0 < p < 1,\\\mathbb{E}X=0,\ \sum_{n=1}^{\infty}\frac{|\mathbb{E}XI\{|X|\leq n\}|}{n}<\infty,\mbox{ and }\\\sum_{n=1}^{\infty}\frac{\int_{\min\{u_{n},n\}}^{n}\mathbb{P}(|X|>t)\,dt}{n}<\infty &; \mbox{if }p = 1,\\\mathbb{E}X=0\mbox{ and }\int_{0}^{\infty}\mathbb{P}^{1/p}(|X|>t)\,dt<\infty,&;\mbox{if }1 < p < 2,\end{cases}$
where \(u_{n}=\inf \{t:~\mathbb{P}(|X|>t)<\frac{1}{n}\}\), n≥1. Versions of the above result in a Banach space setting are also presented. To establish these results, we invoke the remarkable Hoffmann-Jørgensen (Stud. Math. 52:159–186, 1974) inequality to obtain some general results for sums of the form \(\sum_{n=1}^{\infty}a_{n}\|\sum_{i=1}^{n}V_{i}\|\) (where {V n ; n≥1} is a sequence of independent Banach-space-valued random variables, and a n ≥0, n≥1), which may be of independent interest, but which we apply to \(\sum_{n=1}^{\infty}\frac{1}{n}(\frac{|S_{n}|}{n^{1/p}})\).
  相似文献   

13.
In the space L 2(?2), we consider the operator
$H = \left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }} - x_2 } \right)^2 + \left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }} + x_1 } \right)^2 + V,V = V(x) \in L_2 (\mathbb{R}^2 ).$
. We study the spectrum of H and, for VC 0 2 (?2), prove the trace formula
$\sum\limits_{k = 0}^\infty {\left( {\sum\limits_{i = - k}^\infty {(4k + 2 - \mu _k^{(i)} ) + c_0 } } \right)} = \frac{1}{{8\pi }}\int\limits_{\mathbb{R}^2 } {V^2 (x)dx,} $
where c 0 = π ?1 \(\smallint _{\mathbb{R}^2 } \) V(x) dx and the µ k (i) are the eigenvalues of H.
  相似文献   

14.
Let D be an arbitrary skew field and K a central subfield of D. We prove that D can be embedded in a skew field Δ such that w(Δ)=Δ for every nonempty Lie word w on a set of variables y1,y2,.?.?. with coefficients in K; moreover, we have for the multiplicative group Δ* that v*)=Δ* for every nonempty word \(v=x_{1}^{\varepsilon_{1}}x_{2}^{\varepsilon_{2}}\ldots x_{n}^{\varepsilon_{n}}\) (?i=±1; i=1,2,.?.?.,n).  相似文献   

15.
We consider the partial-sum process \( {S}_n(t)={\sum}_{k=0}^{\left\lfloor nt\right\rfloor }{X}_k \) of linear processes \( {X}_n={\sum}_{i=0}^{\infty }{c}_i{\upxi}_{n-i} \) with independent identically distributed innovations {ξ i } belonging to the domain of attraction of α-stable law (0 < α ≤ 2). If |c k |?=?k ?,?k?∈???,?γ?> max(1, 1/α), and \( {\sum}_{k=0}^{\infty}\kern0.5em ck=0 \) (the case of negative memory for the stationary sequence {X n }), then it is known that the normalizing sequence of S n (1) can grow as n 1/α?γ+1 or remain bounded if the signs of the coefficients are constant or alternate, respectively. It is of interest to know whether it is possible, given ? ∈ (0, 1/α ? γ + 1), to change the signs of c k so that the rate of growth of the normalizing sequence would be n ? . In this paper, we give the positive answer: we propose a way of choosing the signs and investigate the finite-dimensional convergence of appropriately normalized S n (t) to linear fractional Lévy motion.  相似文献   

16.
Let {x n } be a sequence of complex numbers and let \({\Delta^nx_j = \sum\nolimits_{k=0}^{n} (-1)^k\break\left(\begin{array}{l}n\\ k\\\end{array} \right)x_{n-k+j}}\) . In this paper, we will show that if \({ |x_n| = O(n^k)}\) , as n → ∞ for some positive integer k, and \({n|\Delta^n x_j|^{\frac{1}{n}} \to 0}\) as n→ ∞, then \({\Delta^{k+1} x_j = 0}\) . More importantly, applications to the orbits of operators and invariant subspace problem are also given; this helps to improve former results obtained by Gelfand–Hille, Mbekhta–Zemánek and others.  相似文献   

17.
For a simple graph G on n vertices and an integer k with 1 ? k ? n, denote by \(\mathcal{S}^+_k\) (G) the sum of k largest signless Laplacian eigenvalues of G. It was conjectured that \(\mathcal{S}^+_k(G)\leqslant{e}(G)+(^{k+1}_{\;\;2})\) (G) ? e(G) + (k+1 2), where e(G) is the number of edges of G. This conjecture has been proved to be true for all graphs when k ∈ {1, 2, n ? 1, n}, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all k). In this note, this conjecture is proved to be true for all graphs when k = n ? 2, and for some new classes of graphs.  相似文献   

18.
The paper considers cubature formulas for calculating integrals of functions f(X), X = (x 1, …, x n ) which are defined on the n-dimensional unit hypercube K n = [0, 1] n and have integrable mixed derivatives of the kind \(\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)\), 0 ≤ α j ≤ 2. We estimate the errors R[f] = \(\smallint _{K^n } \) f(X)dX ? Σ k = 1 N c k f(X(k)) of cubature formulas (c k > 0) as functions of the weights c k of nodes X(k) and properties of integrable functions. The error is estimated in terms of the integrals of the derivatives of f over r-dimensional faces (rn) of the hypercube K n : |R(f)| ≤ \(\sum _{\alpha _j } \) G j )\(\int_{K^r } {\left| {\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)} \right|} \) dX r , where coefficients G j ) are criteria which depend only on parameters c k and X(k). We present an algorithm to calculate these criteria in the two- and n-dimensional cases. Examples are given. A particular case of the criteria is the discrepancy, and the algorithm proposed is a generalization of those used to compute the discrepancy. The results obtained can be used for optimization of cubature formulas as functions of c k and X(k).  相似文献   

19.
We say that an R-module M is virtually semisimple if each submodule of M is isomorphic to a direct summand of M. A nonzero indecomposable virtually semisimple module is then called a virtually simple module. We carry out a study of virtually semisimple modules and modules which are direct sums of virtually simple modules . Our study provides several natural generalizations of the Wedderburn-Artin Theorem and an analogous to the classical Krull-Schmidt Theorem. Some applications of these theorems are indicated. For instance, it is shown that the following statements are equivalent for a ring R: (i) Every finitely generated left (right) R-module is virtually semisimple; (ii) Every finitely generated left (right) R-module is a direct sum of virtually simple R-modules; (iii) \(R\cong {\prod }_{i = 1}^{k} M_{n_{i}}(D_{i})\) where k,n 1,…,n k ? and each D i is a principal ideal V-domain; and (iv) Every nonzero finitely generated left R-module can be written uniquely (up to isomorphism and order of the factors) in the form R m 1 ⊕… ⊕ R m k where each R m i is either a simple R-module or a virtually simple direct summand of R.  相似文献   

20.
Hirschhorn and Sellers studied arithmetic properties of the number of partitions with odd parts distinct. In another direction, Hammond and Lewis investigated arithmetic properties of the number of bipartitions. In this paper, we consider the number of bipartitions with odd parts distinct. Let this number be denoted by pod ?2(n). We obtain two Ramanujan-type identities for pod ?2(n), which imply that pod ?2(2n+1) is even and pod ?2(3n+2) is divisible by 3. Furthermore, we show that for any α≥1 and n≥0, \(\mathit{pod}_{-2}(3^{2\alpha+1}n+\frac{23\times 3^{2\alpha}-7}{8}) \) is a multiple of 3 and \(\mathit{pod}_{-2}(5^{\alpha+1}n+\frac{11\times5^{\alpha}+1}{4})\) is divisible by 5. We also find combinatorial interpretations for the two congruences modulo 2 and 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号