首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The parameters of Franck–Condon and Herzberg–Teller interactions that form the fine-structure spectra of all-trans diphenyl polyenes in n-paraffin solutions at 4.2 K are analyzed. The effect the length of a polyene chain has on the emergence of benzene fragment bands is considered for four all-trans-diphenyl polyene compounds that differ by the number of π-conjugated bonds in the polyene chain.  相似文献   

2.
The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current–voltage I(V) and capacitance–voltage C(V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.  相似文献   

3.
The electronic structure and spectral-luminescence properties of the dye merocyanine 540 have been calculated within the framework of the semiempirical quantum-chemical method of partial neglect of differential overlap (PNDO) with spectroscopic parameterization. The trans and cis conformations of the molecule, as well as the trans–cis photoisomerization process, have been considered. The calculation has been performed for an isolated molecule of the merocyanine 540 and its complex with water. The results of the calculation have been compared with the experimental spectral-luminescence characteristics of the molecule in different solvents. It has been shown that there is a good agreement between the calculated and experimental spectra, the nature of the excited states, and photoprocesses.  相似文献   

4.
The effect of intrinsic defects on the electronic structure of boron-nitrogen nanotubes (5, 5) and (9, 0) is investigated by the method of linearized associated cylindrical waves. Nanotubes with extended defects of substitution N B of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with an impurity concentration of 1.5 to 5% are considered. It is shown that the presence of such defects significantly affects the band structure of boron-nitrogen nanotubes. A defect band Dπ(B, N) is formed in the bandgap, which sharply reduces the width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands change and the gap between s and sp bands is partially filled. These effects may be detected experimentally by, e.g., optical and photoelectron spectroscopy.  相似文献   

5.
Ab initio calculations of the structural, electronic, and optical properties of the CdB4O7 and HgB4O7 tetraborate compounds in three structural modifications with the Pbca, Cmcm, and Pmn21 symmetry have been performed in the framework of the density functional theory using the VASP package. The calculations of the electronic band structure showed that these compounds in all the investigated modifications are dielectrics with a band gap of 2–4 eV. The calculation of the structural properties of the tetraborates under pressure showed that the phase transition between the Pbca and Pmn21 structures in cadmium and mercury tetraborates occurs under pressures of 4.8 and 4.7 GPa, respectively.  相似文献   

6.
The electronic band structures of boron nitride crystal modifications of the graphite (h-BN), wurtzite (w-BN), and sphalerite (c-BN) types are calculated using the local coherent potential method in the cluster muffin-tin approximation within the framework of the multiple scattering theory. The specific features of the electronic band structure of 2H, 4H, and 3C boron nitride polytypes are compared with those of experimental x-ray photoelectron, x-ray emission, and K x-ray absorption spectra of boron and nitrogen. The features of the experimental x-ray spectra of boron nitride in different crystal modifications are interpreted. It is demonstrated that the short-wavelength peak revealed in the total densities of states (TDOS) in the boron nitride polytypes under consideration can be assigned to the so-called outer collective band formed by 2p electrons of boron and nitrogen atoms. The inference is made that the decrease observed in the band gap when changing over from wurtzite and sphalerite to hexagonal boron nitride is associated with the change in the coordination number of the components, which, in turn, leads to a change in the energy location of the conduction band bottom in the crystal.  相似文献   

7.
The spectrum of Tellurium monoxide as excited in a heavy current arc run by a 2000 volt D.C. generator was studied in the visible and ultraviolet regions. Photographs of the spectrum revealed many new bands in the regionλ 6200 toλ 3300, which are clearly degraded to longer wavelengths. Some of the bands in the regionλ 3800 toλ 3300 were identified with those of the system in the regionλ 3800 toλ 3060 (here designated as system,B-X) observed and analysed byChoong Shin Piaw. The analysis of theB-X system was extended to include some of the new bands uptoλ 4500. In addition to those assigned toB-X system, a number of new bands in the regionλ 5000 toλ 3500 constitute another system designated asA-X system. The analysis of this system has led to the following quantum formula for the band heads.v=27835+408 (v′+1/2)?4·0(v′+1/2)2 ?796 (v″+1/2)+3·5 (v″+1/2)2. The lower state of the two systems is common and is identified as the ground state of the TeO molecule. Bands in the regionλ 6200 to 5000 were analysed as belonging to another brief system. This system appears to arise from a transition between two escited states of the TeO molecule. The nature and properties of electronic terms responsible for the observed electronic states of the TeO molecule were discussed along with those of the related molecules O2, SO, and SeO from considerations of electron configurations.  相似文献   

8.
A spin linear chain with antiferromagnetic nearest-neighbor interaction is considered. The coupling constants of each spin with the right and left neighbors are different. Within the Bulaevskii model, the magnetic specific heat is calculated as a function of temperature for different alternation parameters. It is shown that the temperature dependence of the specific heat has two regimes. In the first one, the temperature is lower than half the band gap; in this case, in the low-temperature limit, CT-1 exp(?Δ/kBT). In the second regime, the temperature exceeds half the band gap; in this case, we approximately have CT.  相似文献   

9.
Using the nonequilibrium Green’s function method combined with the tight-binding Hamiltonian, we theoretically investigate the spin-dependent transmission probability and spin Seebeck coefficient of a crossed armchair-edge graphene nanoribbon (AGNR) superlattice p-n junction under a perpendicular magnetic field with a ferromagnetic insulator, where junction widths W1 of 40 and 41 are considered to exemplify the effect of semiconducting and metallic AGNRs, respectively. A pristine AGNR system is metallic when the transverse layer m = 3j + 2 with a positive integer j and an insulator otherwise. When stubs are present, a semiconducting AGNR junction with width W1 = 40 always shows metallic behavior regardless of the potential drop magnitude, magnetization strength, stub length, and perpendicular magnetic field strength. However, metallic or semiconducting behavior can be obtained from a metallic AGNR junction with W1 = 41 by adjusting these physical parameters. Furthermore, a metal-to-semiconductor transition can be obtained for both superlattice p-n junctions by adjusting the number of periods of the superlattice. In addition, the spin-dependent Seebeck coefficient and spin Seebeck coefficient of the two systems are of the same order of magnitude owing to the appearance of a transmission gap, and the maximum absolute value of the spin Seebeck coefficient reaches 370 µV/K when the optimized parameters are used. The calculated results offer new possibilities for designing electronic or heat-spintronic nanodevices based on the graphene superlattice p-n junction.  相似文献   

10.
The present paper reports the effect of Bi addition on the optical behavior (optical band gap and refractive index) of Ge20Te80?x Bi x (where x=0, 1.5, 2.5, 5.0) glassy alloys by analyzing the transmission and reflection spectra of their thin films in the 900–2400 nm range. Films are deposited on glass substrate using a thermal evaporation technique under vacuum. Various optical parameters viz. refractive index, extinction coefficient, absorption coefficient, optical band gap, etc. are determined and the effect of Bi incorporation on these parameters is studied. The refractive index has been found to increase with increasing Bi content over the entire spectral range and this behavior is due to the increased polarizability of the larger Bi atomic radius (1.46 Å) compared to Te atomic radius (1.36 Å). Dispersion energy, E d , average energy gap, E 0 and static refractive index, n 0 is calculated using Wemple–DiDomenico model. Optical band gap is estimated using Tauc’s extrapolation and is found to decrease from 0.86 to 0.73 eV with the Bi addition. This behavior of the optical band gap is interpreted in terms of the electronegativity difference of the atoms involved and the cohesive energy of the system.  相似文献   

11.
The electronic energy structure of 2H and 3C AlN and BN crystals and BxAl1?xN solid solutions is calculated on the basis of the local coherent potential method using the cluster version of the MT approximation and the theory of multiple scattering. The features of the electronic structure of 2H-AlN crystals are compared with x-ray K and L absorption and emission spectra of aluminum and nitrogen. An interpretation of these features is given. The concentration dependences of the width of the upper subband of the valence band and the band gap in BxAl1?xN solid solutions (x = 0.25, 0.5, 0.75) are investigated. Charge transfer from aluminum to nitrogen atoms is shown to occur and increase with boron doping in both crystallographic modifications.  相似文献   

12.
One-dimensional localized waves, which can be considered as soliton elementary excitations, exist in a magnet with a unit spin and comparable bilinear and biquadratic spin-spin interactions, with which the state of spin nematic is realized. These excitations are characterized by a certain momentum P and a certain energy E. The structure of these solitons has been found, and the E = E(P) dependence, which plays the role of the dispersion law of these soliton elementary excitations, has been constructed. The energy of a soliton with a certain momentum is shown to be lower than that of the quasiparticles of a linear theory. At small momenta, these E = E(P) dependences of the soliton and quasiparticles coincide asymptotically. The dependence of the soliton energy on the soliton momentum is a periodic function with a period P 0 = π?/a, whose value does not depend on exchange integrals and depends only on a single crystal parameter, namely, the interatomic distance a. These soliton excitations have common features with the so-called Lieb states, which are well known in many condensed matter models.  相似文献   

13.
Local density approximation (LDA) and Green function effective Coulomb (GW) calculations are performed to investigate the effect of electronic correlations on the electronic properties of both graphene and graphane. The size of band gap in graphane increases from 3.7 eV in LDA to 4.9 eV in GW approximation. By calculating maximally localized Wannier wave functions, we evaluate the necessary integrals to get the Hubbard U and the exchange J interaction from first principles for both graphene and graphane. Our ab-initio estimates indicate that in the case of graphene, in addition to the hopping amplitude t ~ 2.8 eV giving rise to the Dirac nature of low lying excitations, the Hubbard U value of ~8.7 eV gives rise to a super-exchange strength of J AFM ~ 3.5 eV. This value dominates over the direct (ferromagnetic) exchange value of J FM ~ 1.6 eV. This brings substantial Mott-Heisenberg aspects into the problem of graphene. Moreover, similarly large values of the Hubbard and super-exchange strength in graphane suggests that the nature of gap in graphane has substantial Mott character.  相似文献   

14.
The reflectance spectra of a one-dimensional photonic crystal based on a silicon-air periodic structure are calculated. A map of photonic band gaps is plotted, which makes it possible to deliberately choose the geometric parameters of the structure (the thickness of silicon partitions D Si and the period A) for different ranges of the wavelength λ. To obtain structures with a photonic band gap in the range A/λ=0.15–0.5, the main region (as rule, corresponding to the lowest frequencies) can be used, and, taking into account the secondary photonic band gaps, the range A/λ can be extended to 1 and even more. In addition, it is found that, in the range D Si/A=0.4–0.9, the secondary band gaps may be wider than the main ones (on the frequency scale). The influence of the filling factor D Si/A on the formation of the edges of spectral bands is revealed.  相似文献   

15.
4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)-3-methoxybenzaldehyde has been synthesized in an attempt to obtain a new photochromic compound. The optimized molecular structure, mole fractions of title compound in trans and ana forms have been investigated. UV-visible spectra of the compound were also recorded. Upon irradiation with 300 nm light, the camel solid turned orange, in which a visible absorption band was observed at 475 nm. The electronic properties, such as HOMO, LUMO and band gap energies were obtained by the time-dependent DFT (TD-DFT) approach. The predicted nonlinear optical properties of the title compound are much greater than those of urea. Transition structures were calculated by QST3 and IRC methods which yielded the potential energy surface and activation energy.  相似文献   

16.
The optical absorption spectra of 1,2-naphthoquinone in polar (methanol) and nonpolar (n-hexane) solvents are recorded. It is found that the specific effect of a polar solvent, which manifests itself in a hypsochromic shift of the first nπ* band and in a bathochromic shift of the second and third ππ* bands, is caused by the formation of hydrogen bonds between solvent molecules and the molecule under study and, as a result, by a change in the energy gap between the corresponding occupied and unoccupied molecular orbitals. This result is obtained by TDDFT B3LYP/6-311+G(d, p) calculations of electronic spectra, which, in the case of an isolated 1,2-naphthoquinone molecule, reproduce its experimental optical absorption spectra in n-hexane and, in the case of the same molecule forming a complex with methanol molecules by means of hydrogen bonds, reproduce the spectrum of 1,2-naphthoquinone in methanol.  相似文献   

17.
In this note, method of Lie symmetries is applied to investigate symmetry properties of time-fractional K(m, n) equation with the Riemann–Liouville derivatives. Reduction of time-fractional K(m, n) equation is done by virtue of the Erdélyi–Kober fractional derivative which depends on a parameter α. Then soliton solutions are extracted by means of a transformation.  相似文献   

18.
We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.  相似文献   

19.
Calculations of absorption spectra of cis-and trans-forms of stilbene by the quantum-chemical method of intermediate neglect of differential overlap with spectroscopy parametrization were carried out. The electron structure of a stilbene molecule was studied and energy-level diagrams were drawn and analyzed. Rate constants of different photophysical processes occurring in a stilbene molecule after absorption of a photon were calculated in relation to the molecule conformation. On the basis of the obtained results, possible configurations of photoisomer molecules were considered and the most probable configurations of excited stilbene molecules were determined. It was shown how the change in the configurations of cis-and trans-forms of stilbene affects its spectral properties.  相似文献   

20.
First-principles calculations of the electronic and optical properties of the bulkIn x Ga1 ? x N alloys aresimulated within the framework of full-potential linearized augmented plane-wave (FP-LAPW)method. To this end, a sufficiently adequate approach, namely modified Becke-Johnson(mBJLDA) exchange correlation potential is employed for calculating the energy band gapand optical absorption of InGaN-based solar cells systems. The quantities such as theenergy gap, density of states, imaginary part of dielectric function, refractive index andabsorption coefficient are determined for the bulkIn x Ga1?x N alloys, in thecomposition range from x = 0 to x = 1. It is found thatthe indium composition robustly controls the variation of band gap. From the examinationof the density of states and optical absorption ofIn x Ga1?x N ternary alloys,the energy gaps are significantly reduced for largest In concentration. The computed bandgaps vary nonlinearly with the composition x. It is also surmised thatthe significant variation in the band gaps elaborated via the experimental crystallinegrowth process, is originated by altering the In composition. Interestingly, it isworthwhile to perform InGaN solar cells alloys with improved efficiencies, because oftheir entire energy gap variation from 0.7 to 3.3 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号