首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We establish existence and uniqueness results for a general class of coupled nonlinear third order differential equations arising in flow and heat transfer problems. We consider solutions over the semi-infinite interval. As special cases, we recover the existence and uniqueness results of solutions for the following physically meaningful scenarios (among others): (i) flow and heat transfer over a stretching sheet, (ii) flow and heat transfer over a nonlinearly stretching porous sheet, (iii) linear convective flow and heat transfer over a porous nonlinearly stretching sheet and (iv) nonlinear convective heat transfer over a porous nonlinearly stretching sheet. In all the cases the effects of viscous dissipation and the internal heat generation/absorption on the flow and heat transfer characteristics are included. Moreover, the obtained results are applicable to several problems dealing with flow and heat transfer phenomena.  相似文献   

2.
In this paper, an analytical solution in a closed form for the boundary layer flow over a shrinking sheet is presented when arbitrary velocity distributions are applied on the shrinking sheet. The solutions with seven typical velocity profiles are derived based on a general closed form expression. Such flow is usually not self-similar and the solution can only be implemented when the mass transfer at the wall is prescribed and determined by the moving velocity of the wall. The characteristics of the flows with the typical velocity distributions are discussed and compared with previous similarity solutions. The flow is observed to have quite different behavior from that of the self-similar flow reported in the literature and the results demonstrate distinctive momentum and energy transport characteristics. Some plots of the stream functions are also illustrated to show the difference in flow field between the shrinking sheet and the stretching sheet. An integral approach to solve boundary layer flow over a shrinking or stretching sheet with uncoupled arbitrary surface velocity and wall mass transfer velocity is outlined and the effectiveness of this approach is discussed.  相似文献   

3.
In this paper a study is carried out to understand the transition effect of boundary layer flow: (1) due to a suddenly imposed magnetic field over a viscous flow past a stretching sheet and (2) due to sudden withdrawal of magnetic field over a viscous flow past a stretching sheet under a magnetic field. In both the cases the sheet stretches linearly along the direction of the fluid flow. Governing equations have been non-dimensionalised and the non-dimensionalised equations have been solved using the implicit finite difference method of Crank–Nicholson type. Comparison between the steady state exact solutions and the steady state computed solutions has been carried out. Graphical representation of the dimensionless horizontal velocity, vertical velocity and local skin friction profiles of the steady state and unsteady state has been presented. Computation has been carried out for various values of the magnetic parameter M. The obtained results has been interpreted and discussed.  相似文献   

4.
An approximate solution to the problem of steady laminar flow of a viscous incompressible electrically conducting fluid over a stretching sheet is presented. The approach is based on the idea of stretching the variables of the flow problem and then using least squares method to minimize the residual of a differential equation. The effects of the magnetic field on the flow characteristics are demonstrated through numerical computations with different values of the Hartman number.  相似文献   

5.
An approximate solution to the problem of steady laminar flow of a viscous incom pressible electrically con- ducting fluid over a stretching sheet is presented. The approach is based on the idea of stretching the variables of the flow problem and then using least squares method to minimize the residua of a differential equation. The effects of the magnetic field on the flow characteristics are demonstrated through numerical computations with different values of the Hartman number.  相似文献   

6.
The viscous flow due to a stretching sheet with slip and suction is studied. The Navier–Stokes equations admit exact similarity solutions. For two-dimensional stretching a closed-form solution is found and uniqueness is proved. For axisymmetric stretching both existence and uniqueness are shown. The boundary value problem is then integrated numerically.  相似文献   

7.
In the present study, we have described the stagnation point flow of a viscous fluid towards a stretching sheet. The complete analytical solution of the boundary layer equation has been obtained by homotopy analysis method (HAM). The solutions are compared with the available numerical results obtained by Nazar et al. [Nazar R, Amin N, Filip D, Pop I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int J Eng Sci 2004;42:1241–53] and a good agreement is found. The convergence region is also computed which shows the validity of the HAM solution.  相似文献   

8.
This paper presents research on the fractional boundary layer flow and heat transfer over a stretching sheet with variable thickness. Based on the Caputo operators, the double fractional Maxwell model and generalized Fourier's law are introduced to the constitutive relationships. The governing equations are solved numerically by utilizing the finite difference method. The effects of fractional parameters on the velocity and temperature field are analyzed. The results indicate that the larger is the fractional stress parameter, the stronger is the elastic characteristic. However, fluids show viscous fluid-like behavior for a larger value of fractional strain parameter. Moreover, the numerical solutions are in good agreement with the exact solution and the convergence order can achieve the expected first order. The numerical method in this study is reliable and can be extended to other fractional boundary layer problems over a variable thickness sheet.  相似文献   

9.
This paper deals with the unsteady axisymmetric flow and heat transfer of a viscous fluid over a radially stretching sheet. The heat is prescribed at the surface. The modelled non-linear partial differential equations are solved using an analytic approach namely the homotopy analysis method. Unlike perturbation technique, this approach gives accurate analytic approximation uniformly valid for all dimensionless time. The explicit expressions for velocity, temperature and skin friction coefficient are developed. The influence of time on the velocity, temperature and skin friction coefficient is discussed.  相似文献   

10.
This paper reports a new meshless Integrated Radial Basis Function Network (IRBFN) approach to the numerical simulation of interfacial flows in which the two-way interaction between a moving interface and the ambient viscous flow is fully investigated. When an interface between two immiscible fluids moves, not only its position and shape but also the flow variables (i.e. velocity field and pressure) change due to the presence of surface tension along the moving interface. The velocity field of the ambient flow, on the other hand, causes the interface to move and deform as a result of momentum transport between the two immiscible fluids on both sides of the interface. Numerical investigations of such a two-way interaction is reported in this paper where the level set method is used in combination with high-order projection schemes in the meshless framework of the IRBFN method. Numerical investigations on the meshless projection schemes are performed with typical benchmark incompressible viscous flow problems for verification purposes. The approach is then demonstrated with the numerical simulation of two bubbles moving, stretching and merging in an incompressible ambient fluid under the action of buoyancy force.  相似文献   

11.
The aspire of this article is to bring in a new approximate method, that is to say the Laplace Padé decomposition method which is a mixture of Laplace decomposition and Padé approximation to offer an analytical approximate way out to magnetohydrodynamics flow over a nonlinear porous stretching sheet. This new iteration approach provides us with a convenient way to approximate solution. A closed agreement between the obtained solution and some well-known results has been established. The proposed procedure can be applied to handle other nonlinear problems.  相似文献   

12.
The article named above appeared recently in Applied Mathematics Letters and investigated a boundary value problem governing viscous flow over a nonlinearly stretching sheet. The authors of the work assert existence and (under certain restrictions) uniqueness of a solution to the problem for all relevant values of the parameter governing the stretching rate of the sheet. Unfortunately, several proofs presented in the article are incorrect. We will prove that for a range of parameter space the solution to the BVP is not unique. For these parameter values there are infinitely many solutions to the problem. The same incorrect analysis is reproduced in several other papers (see the references). Some of the claims of these papers are contradicted by established results on, for example, the Falkner–Skan problem.  相似文献   

13.
This paper presents an exponential matrix method for the solutions of systems of high‐order linear differential equations with variable coefficients. The problem is considered with the mixed conditions. On the basis of the method, the matrix forms of exponential functions and their derivatives are constructed, and then by substituting the collocation points into the matrix forms, the fundamental matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equations. By solving this system, the unknown coefficients are determined and thus the approximate solutions are obtained. Also, an error estimation based on the residual functions is presented for the method. The approximate solutions are improved by using this error estimation. To demonstrate the efficiency of the method, some numerical examples are given and the comparisons are made with the results of other methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
An analytic method for strongly non-linear problems, namely the homotopy analysis method (HAM), is applied to give convergent series solution of non-similarity boundary-layer flows. As an example, the non-similarity boundary-layer flows over a stretching flat sheet are used to show the validity of this general analytic approach. Without any assumptions of small/large quantities, the corresponding non-linear partial differential equation with variable coefficients is transferred into an infinite number of linear ordinary differential equations with constant coefficients. More importantly, an auxiliary artificial parameter is used to ensure the convergence of the series solution. Different from previous analytic results, our series solutions are convergent and valid for all physical variables in the whole domain of flows. This work illustrates that, by means of the homotopy analysis method, the non-similarity boundary-layer flows can be solved in a similar way like similarity boundary-layer flows. Mathematically, this analytic approach is rather general in principle and can be applied to solve different types of non-linear partial differential equations with variable coefficients in science and engineering.  相似文献   

15.
Hypersonic rarefied gas flow over blunt bodies in the transitional flow regime (from continuum to free-molecule) is investigated. Asymptotically correct boundary conditions on the body surface are derived for the full and thin viscous shock layer models. The effect of taking into account the slip velocity and the temperature jump in the boundary condition along the surface on the extension of the limits of applicability of continuum models to high free-stream Knudsen numbers is investigated. Analytic relations are obtained, by an asymptotic method, for the heat transfer coefficient, the skin friction coefficient and the pressure as functions of the free-stream parameters and the geometry of the body in the flow field at low Reynolds number; the values of these coefficients approach their values in free-molecule flow (for unit accommodation coefficient) as the Reynolds number approaches zero. Numerical solutions of the thin viscous shock layer and full viscous shock layer equations, both with the no-slip boundary conditions and with boundary conditions taking into account the effects slip on the surface are obtained by the implicit finite-difference marching method of high accuracy of approximation. The asymptotic and numerical solutions are compared with the results of calculations by the Direct Simulation Monte Carlo method for flow over bodies of different shape and for the free-stream conditions corresponding to altitudes of 75–150 km of the trajectory of the Space Shuttle, and also with the known solutions for the free-molecule flow regine. The areas of applicability of the thin and full viscous shock layer models for calculating the pressure, skin friction and heat transfer on blunt bodies, in the hypersonic gas flow are estimated for various free-stream Knudsen numbers.  相似文献   

16.
In this paper we present numerical solutions to the unsteady convective boundary layer flow of a viscous fluid at a vertical stretching surface with variable transport properties and thermal radiation. Both assisting and opposing buoyant flow situations are considered. Using a similarity transformation, the governing time-dependent partial differential equations are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by a second order finite difference scheme known as the Keller-Box method. The numerical results thus obtained are analyzed for the effects of the pertinent parameters namely, the unsteady parameter, the free convection parameter, the suction/injection parameter, the Prandtl number, the thermal conductivity parameter and the thermal radiation parameter on the flow and heat transfer characteristics. It is worth mentioning that the momentum and thermal boundary layer thicknesses decrease with an increase in the unsteady parameter.  相似文献   

17.
In this paper, we investigate the heat transfer of a viscous fluid flow over a stretching/shrinking sheet with a convective boundary condition. Based on the exact solutions of the momentum equations, which are valid for the whole Navier–Stokes equations, the energy equation ignoring viscous dissipation is solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking parameter on the temperature profiles and wall heat flux are presented and discussed. The solution is given as an incomplete Gamma function. It is found the convective boundary conditions results in temperature slip at the wall and this temperature slip is greatly affected by the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking parameters. The temperature profiles in the fluid are also quite different from the prescribed wall temperature cases.  相似文献   

18.
本文用逐步逼近法得到了粘性流体运动的自型问题的微分方程(1.1~1.4)的分析解Проснак(1969)用小参数法也得到了这些方程的解.但他把控制方程变换成为一组线性变系数微分方程.本文则把控制方程变换成为线性常系数微分方程.  相似文献   

19.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

20.
In this paper, the study the momentum and heat transfer characteristics in an incompressible electrically conducting non‐Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly nonlinear coupled ordinary differential equations by similarity transformations. The resultant coupled highly nonlinear ordinary differential equations are solved by means of, homotopy analysis method (HAM) for constructing an approximate solution of heat transfer in magnetohydrodynamic (MHD) viscoelastic boundary layer flow over a stretching sheet with non‐uniform heat source. The proposed method is a strong and easy to use analytic tool for nonlinear problems and does not need small parameters in the equations. The HAM solutions contain an auxiry parameter, which provides a convenient way of controlling the convergence region of series solutions. The results obtained here reveal that the proposed method is very effective and simple for solving nonlinear evolution equations. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号