首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
我们利用DFT中的B3LYP方法优化了Ru(Ⅱ)配合物和氧化的Ru(Ⅲ)配合物[Ru(bpy)(PH3)(-C≡CC6H4NO2-p)Cl]m[bpy=2,2′-bipyridine;m=0 (1),+1 (1+)]的基态几何结构,得到的几何参数与实验结果吻合的很好。采用TDDFT方法,得到了配合物11+的激发态电子结构和电子吸收光谱。研究结果表明,配合物11+随着氧化过程的发生,光谱性质也发生变化,Ru(Ⅱ)配合物的低能吸收被指认为MLCT/LLCT混合跃迁,而氧化的Ru(Ⅲ)配合物1+的低能吸收具有LMCT跃迁性质。  相似文献   

2.
利用密度泛函理论(DFT)中的B3LYP方法优化了氮化钌和氮化锇配合物[M(N)X2]-[M=Ru, Os; X=S2C6H4, mnt(maleonitriledithiolate)]的基态几何结构, 得到的几何参数与实验结果吻合得很好. 采用TD-DFT方法, 得到了配合物在CH3CN溶液中的激发态电子结构和电子吸收光谱. 利用SCRF方法中的CPCM模型来模拟溶剂化效应. 研究结果表明, 配合物1~4在CH3CN溶液中的吸收跃迁性质相似, 低能吸收均被指认为LMCT和LLCT的混合跃迁, 高能吸收均被指认为ILCT/LLCT跃迁.  相似文献   

3.
利用DFT中的B3LYP方法优化了3个联吡啶钌配合物[Ru(Htcterpy)X3]3-[tcterpy=4,4',4"-tricarboxy-2,2'∶6',2"-terpyridine, X=NCS(1), CN(2), Cl(3)]的基态几何结构, 得到的几何参数与实验结果吻合得很好. 采用TD-DFT方法, 得到了配合物1~3在气态和溶液(乙醇溶液和水溶液)中的激发态电子结构和电子吸收光谱. 利用SCRF方法中的CPCM模型来模拟溶剂化效应. 研究结果表明, 配合物1~3在气态和溶液中的吸收跃迁性质相似, 低能吸收均被指认为MLCT和LLCT的混合跃迁, 高能吸收均被指认为三联吡啶配体内的π→π*跃迁. 溶剂化效应使配合物1~3在溶液中的吸收光谱蓝移.  相似文献   

4.
Ru(bpy)32+配合物及bpy上双取代基效应的DFT法研究   总被引:1,自引:0,他引:1  
报道Ru(bpy)32+配合物取代基效应的量子化学密度泛函(DFT)法研究的结果。探讨Ru(bpy)32+的三个配体bpy(2,2′-联二吡啶)被取代基(-NH2,-OH,-NO2)对位双取代后对配合物电子结构及相关性质,如配位键长、光谱性质等的影响规律,为该类配合物的合成及性质分析提供理论参考。  相似文献   

5.
配合物[Ru(bpy)2(H2biim)](PF6)2(1)(bpy=2,2′-联吡啶,H2biim=2,2′-联咪唑)和[Ru(bpy)2(H2bbim)](PF6)2(4)(H2bbim=2,2′-苯并联咪唑)是良好的阴离子识别剂.用密度泛函理论方法研究了2种阴离子识别剂脱去质子后的几何结构和电子结构的变化.计算结果表明:脱去质子后配合物HOMO轨道上电子云分布由中心钌原子转移到(苯并)联咪唑上,而LUMO轨道虽然能量增加但电子云仍然分布在bpy配体上;另外,最高占居轨道HOMO与最低空轨道LUMO的能量差ΔεL-H逐渐减小,相对于配合物的吸收波长增大,所以分子的吸收峰发生红移,这与实验现象相吻合。  相似文献   

6.
采用密度泛函理论以及B3LYP方法和单激发组态相互作用(CIS)方法分别优化了一系列[Os(II)(CO)3(tfa)(L)](tfa为三氟乙酸; L=O^O(1), O^N(2), N^N(3), 其中O^O为六氟乙酰丙酮, O^N为羟基喹啉, N^N为3-(三氟甲基)-5-(2-吡啶基)吡唑)配合物的基态和激发态结构. 利用含时密度泛函理论(TD-DFT)结合极化连续溶剂化模型(PCM)计算了配合物在CH2Cl2溶液中的吸收和发射光谱. 研究结果表明, 优化得到的几何结构参数和相应的实验值符合得非常好, 激发态几何构型相对基态变化较小, 这与实验上观察到的较小的斯托克斯频移现象一致. 配合物1-3的最低能吸收分别在342、431和329 nm, 其磷光发射分别在521、638 和488 nm. 配合物1-3的最高占据分子轨道和最低空轨道主要表现为L配体的π和π*轨道特征, 所以它们的最低能吸收归属于π-π*电荷跃迁, 并混有少量的金属到配体的电荷跃迁(MLCT)和配体之间电荷跃迁(LLCT)微扰, 且其高能吸收也表现为配体内部(IL)和配体间(LL)的电荷跃迁. 此外, 它们的磷光发射和吸收有相似的跃迁特征.  相似文献   

7.
采用密度泛函的B3LYP和UB3LYP方法分别优化了一系列[Ru(iph)(L)2]2+ (L=cpy (1), mpy (2), npy (3); 其中iph为2,9-双(1′-甲基-2′-咪唑)-1,10-邻二氮杂菲, cpy为4-氰基嘧啶, mpy为4-甲基嘧啶, npy为4-氮二甲基嘧啶)配合物的基态和激发态结构. 利用含时密度泛函理论(TD-DFT)方法, 结合极化连续介质(PCM)模型计算了它们在丙酮溶液中的吸收和发射光谱. 研究结果表明: 优化得到的几何结构参数和相应的实验值符合得非常好. 1和2的最高占据分子轨道主要由金属的d轨道和iph配体的π轨道构成, 但是3主要占据在npy配体上, 而它们的最低空轨道主要由iph配体的π反键轨道占据. 因此, 1和2的最低能吸收和发射属于金属到配体(MLCT)和配体内部(ILCT)的电荷转移跃迁, 而3属于两个配体之间的电荷转移(LLCT)跃迁. 三个配合物的最低能吸收分别在509 nm (1), 527 nm (2)和563 nm (3), 其磷光发射分别在683 nm (1), 852 nm (2)和757 nm (3). 这显示出通过调节L配体的π电子给予能力可以改变最低能吸收和发射的跃迁性质和发光颜色.  相似文献   

8.
报导了对配合物M(bpy)2 M=Fe,Ru,Os)的量子化学密度泛函(DFT)法研究的结果.在B3LYP/LanL2DZ方法与基组的水平上进行计算 ,探讨M(bpy)32 的电子结构特征及相关性质 ,特别是中心原子对配合物的配位键长、光谱性质、电荷布居及化学稳定性等的影响规律 ,为该类配合物的合成 ,为分析光、电、催化作用机理提供理论参考.  相似文献   

9.
为了探索新型苯基吡唑铱(Ⅲ)配合物的电子结构与光谱性质之间的关系,采用密度泛函理论(DFT)优化了铱金属配合物(ppz)2Ir(BTZ)(1)和(ppz)2Ir(4-TfmBTZ)(2)的基态与激发态的几何结构.通过含时密度泛函理论(TD-DFT)方法计算了配合物的吸收和发射谱,指认了它们的跃迁性质.和Ir(ppz)3相比,通过引入新的辅助配体并对其修饰实现了发光颜色的调节.配合物1和2的最低能磷光发射可指认为3MLCT/3LLCT/3ILCT[π*(R-BTZ)→d(Ir)+π(ppz)+π(R-BTZ)]的电荷混合跃迁.此外,它们的磷光发射和吸收有相似的跃迁性质.MLCT主要发生在Ir(R-BTZ)片段而不是Ir(ppz)2片段.第二配体在此配合物的发光过程中起了主要作用.  相似文献   

10.
以吡啶-3,5-二羧酸、2,2′-联吡啶和硝酸镍为原料,使用水热法合成2个配合物:[Ni(pdc)(bpy)(H2O)3]·2H2O(1)和{[Ni(pdc)(bpy)]·H2O}n(2)。配合物结构经过X射线单晶衍射分析确定都属于单斜晶系,P21/c空间群。晶体1为单核结构,利用氢键连接为三维网状分子。晶体2中二价镍离子为五配位,由吡啶二羧酸阴离子连接为二维平面结构。对化合物1、2进行了红外、紫外和变温磁化率分析。并利用密度泛函方法对2的电子结构和轨道能量进行计算,计算结果与紫外光谱数据基本符合。  相似文献   

11.
采用密度泛函方法(B3LYP)优化了MX2(AsH3)2[M=Pd;X=Cl(1),Br(2),I(3)和M=Pt;X=Cl(4),Br(5),I(6)]的基态结构,得到的几何参数与实验结果符合.以基态几何为基础,将TD-DFT方法用于计算标题配合物的电子吸收光谱.研究结果表明,金属的dx2-y2与配体所组成的反键轨道为LUMO轨道,从而该类配合物具有d-d跃迁属性的吸收带;在多数跃迁过程中,配体也有较大的贡献.  相似文献   

12.
化合物[N,N'-二(亚水杨基)-1,2-乙二胺]Pt(Ⅱ)(1)在OLED材料上具有很大的应用潜力, 我们利用密度泛函(DFT/Lanl2dz)方法计算了它的电子结构和光谱性质. 计算结果与实验值符合得很好. 计算结果表明, 该化合物最低能吸收和三态磷光发射均来自于[L(Phenoxide lone pair)→π*(imine)](LLCT: ligand-to-ligand charge transfer)和[Pt(5d)→π*(Schiff base)](MLCT: metal-to-ligand charge transfer)的混合电荷跃迁. 另外, 计算得到了该配合物在气态中的激发态几何结构. 通过在不同的溶液中计算吸收和发射光谱, 发现该化合物没有明显的溶剂化显色效应, 说明溶液极性对光谱的影响不大.  相似文献   

13.
凌欢欢  李楠  杨帆  吉昕  夏勇  曹都  祁争健 《物理化学学报》2013,29(11):2465-2474
为获取具有活性官能团的接枝型、高性能荧光传感配合物,合成了2-(4-氨基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-NH2)、2-(4-羟基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-OH)、2-(4-羧基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-COOH)和2-(4-硝基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-NO2)四种配体,借助紫外-可见(UV-Vis)吸收光谱、荧光(PL)光谱、循环伏安法(CV)和含时密度泛函理论(TD-DFT)对上述四种配体与过渡金属元素钌(Ru)所形成的配合物的光电性能进行研究.结果表明:四种配合物均在可见光区域有较强吸收,发光范围覆盖绿色到红色光波段.在极性溶剂N,N-二甲基甲酰胺(DMF)中,以2-(4-氨基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉为配体所构建的钌配合物([Ru(CImPB-NH2)(bpy)2]2+的荧光量子产率(Φ)较不含咪唑环的5-氨基邻菲啰啉合钌([Ru(phen-NH2)(bpy)2]2+)的提高了67%,以2-(4-羧基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉所构建的钌配合物([Ru(CImPB-COOH)(bpy)2]2+)的Φ可达29.8%,是[Ru(phen-NH2)(bpy)2]2+的18倍.理论计算表明:配体中取代苯环、咪唑环和邻菲啰啉的稠环共平面,形成共价大π体系,其有效共轭长度较邻菲啰啉母体有显著增加,配合物是以Ru为中心的近似八面体构型,理论计算的电子吸收光谱和跃迁性质与实验结果相一致.上述研究有可能为接枝型、高性能荧光传感配合物的设计和筛选提供实验依据.  相似文献   

14.
采用基于第一性原理的密度泛函理论对单核和双核三联吡啶Pt(II)配合物[Pt(trpy)C≡CH] (1)和[Pt(trpy)C≡ (2)的基态和激发态以及光谱性质进行了系统研究. 结果揭示了双体配合物中Pt—Pt间距离在激发态时明显短于基态时的距离, 而且双体聚合后最低能吸收和发射波长相对单体配合物发生了明显红移, 这种激发的本质被指认为是来自于[dσ*(dδ*π*)]的MMLCT (metal-to-metal-to-ligand charge transfer)电荷转移跃迁. 另外, 对研究的配合物, 用VWN (Vosko-Wilk-Nusair)泛函优化得到的几何和用SAOP(轨道势的统计平均)计算的光谱能量和实验值符合得很好, 能够准确反映实验现象.  相似文献   

15.
使用DFT和TD-DFT方法研究配合物[PcRu(RPy)(Py-COOH)](Pc为酞菁;Py为吡啶;R分别代表COOH,CN,H,Me和OMe)以及它们的单、双电子氧化衍生物的电子结构和吸收光谱,分析表明中性配合物分子要比其氧化态更适合做染料.计算配合物在350 nm处有一个较强的Soret高能吸收带,而在600 nm的Q带吸收相对较弱.这些电子光谱被指认为酞菁环内的π→π*跃迁和Ru→Py-COOH电荷转移.由于染料是通过轴向吡啶上的羧酸与半导体光阳极相联接,所以配合物的π→π*跃迁对随后的电子注入没有贡献;加之该类配合物在400~580 nm可见光区无吸收,解释了该类配合物染料敏化太阳能电池光电转换效率低的原因.  相似文献   

16.
为了探究Zn(Ⅱ)配合物Zn(ATSM)(A)和Zn(BTSC)(DMSO)(B)的电子结构和光谱性质,采用M06方法优化了它们的基态几何构型,并利用计算得到的电子结构信息绘制了配合物在吸收过程中的电子云分布图.理论模拟出的吸收光谱数据与实验结果吻合较好.而且,在理论上检测到了实验上没有报道到的吸收峰.  相似文献   

17.
应用MP2和CIS方法分别优化了IrR(CO)(PH3)2(mnt) [mnt=maleonitriledithiolate; R=H (1), CH3 (2), Br (3)]系列配合物的基态和激发态几何结构. 使用TD-DFT方法计算了配合物的吸收和发射光谱. 计算结果表明: 配合物1~3在430, 435及439 nm处的最低能吸收均为ILCT/LLCT/MLCT混合跃迁性质, 它们的最低能磷光发射和吸收性质相似, 发射波长则红移至760, 770和800 nm. 配合物2与 1的几何结构、光谱性质都很接近, 而配合物3中, 由于溴的引入使其基态和激发态几何构型及前线分子轨道成分与1和2有很大不同, 进而对其光谱及跃迁性质产生了影响.  相似文献   

18.
采用基于第一性原理的密度泛函理论对单核和双核三联吡啶Pt(II)配合物[Pt(trpy)C≡CH] (1)和[Pt(trpy)C≡ (2)的基态和激发态以及光谱性质进行了系统研究. 结果揭示了双体配合物中Pt—Pt间距离在激发态时明显短于基态时的距离, 而且双体聚合后最低能吸收和发射波长相对单体配合物发生了明显红移, 这种激发的本质被指认为是来自于[dσ*(dδ*π*)]的MMLCT (metal-to-metal-to-ligand charge transfer)电荷转移跃迁. 另外, 对研究的配合物, 用VWN (Vosko-Wilk-Nusair)泛函优化得到的几何和用SAOP(轨道势的统计平均)计算的光谱能量和实验值符合得很好, 能够准确反映实验现象.  相似文献   

19.
应用密度泛函理论(DFT)方法对两种C60-多吡啶Ru(Ⅱ)衍生物进行理论研究.在TZP全电子基组优化构型基础上,通过分析前线轨道组成,探讨金属及配体对C60母体影响;以LB及SAOP校正局域密度近似,用含时密度泛函(TDDFT)方法,考虑溶剂化效应,计算化合物1和2的电子吸收光谱.结果表明,化合物1和2在气相与丙酮溶液中所对应的光谱值差异较为明显,溶剂化效应使吸收光谱蓝移.计算得到化合物1和2在丙酮溶液中电子光谱与实验值吻合较好,低能跃迁多为金属参与的混合跃迁,高能跃迁主要由C60与配体部分贡献.  相似文献   

20.
合成了3个钌髤配合物,[Ru(bpy)2(SB)](PF6)2、[Ru(bpy)(SB)2](PF6)2和[Ru(SB)3](PF6)2(bpy=2,2′-bipyridine,SB=4,5-diaza-9,9′-spirobifluorene),通过核磁和元素分析对配合物的结构进行了确定。[Ru(bpy)2(SB)](PF6)2通过X射线单晶衍射确认了结构。研究了配合物的光物理性能。结果表明[Ru(bpy)2(SB)](PF6)2在乙腈中的发桔红光,波长为606 nm,量子产率约为0.001 2。在同样条件下[Ru(bpy)(SB)2](PF6)2和[Ru(SB)3](PF6)2的发光非常微弱甚至几乎没有发光。还研究了这些配合物的电致化学发光性能。随着配体中SB含量的增加,发光的峰电压从1.36 V增加到1.58 V,相对发光强度从731降低到52。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号