共查询到20条相似文献,搜索用时 15 毫秒
1.
We apply transition path sampling to the simulation of nanoparticles under pressure. As a barostat we use a bath of ideal gas particles that form a stochastically updated atmosphere around the nanoparticle. We justify this algorithm by showing that it preserves the distribution of an ideal gas at constant temperature and pressure by satisfying detailed balance. Based on this result, we present a simple and efficient transition path sampling scheme for the study of activated processes in nanoparticles under pressure. As a first application, we investigate the h-MgO to rocksalt transformation in faceted CdSe nanocrystals. Starting from an artificial mechanism involving a uniform motion of all atoms, trajectories quickly converge towards the dominant mechanism of nucleation and growth along parallel (100) planes. 相似文献
2.
We present an innovative device based on a nanoporous Ge electrode decorated by gold nanoparticles (AuNPs). A study aimed at obtaining the best AuNP deposition conditions, which allow the decoration of Ge walls with AuNPs, avoiding particles aggregation is reported.The performance of the electrode has been evaluated by the electrocatalytic reduction of iodoethane in acetonitrile solution, a model reaction in organic electrocatalysis. 相似文献
3.
4.
Duan S Fang PP Fan FR Broadwell I Yang FZ Wu DY Ren B Amatore C Luo Y Xu X Tian ZQ 《Physical chemistry chemical physics : PCCP》2011,13(12):5441-5449
Recently, it was found that Pt clusters deposited on Pd shell over Au core nanoparticles (Au@Pd@Pt NPs) exhibit unusually high electrocatalytic activity for the electro-oxidation of formic acid (P. P. Fang, S. Duan, et al., Chem. Sci., 2011, 2, 531-539). In an attempt to offer an explanation, we used here carbon monoxide (CO) as probed molecules, and applied density functional theory (DFT) to simulate the surface Raman spectra of CO at this core-shell-cluster NPs with a two monolayer thickness of Pd shell and various Pt cluster coverage. Our DFT results show that the calculated Pt coverage dependent spectra fit the experimental ones well only if the Pt clusters adopt a mushroom-like structure, while currently the island-like structure is the widely accepted model, which follows the Volmer-Weber growth mode. This result infers that there should be a new growth mode, i.e., the mushroom growth mode as proposed in the present work, for Au@Pd@Pt NPs. We suggest that such a mushroom-like structure may offer novel active sites, which accounts for the observed high electrocatalytic activity of Au@Pd@Pt NPs. 相似文献
5.
Takeuchi H 《Journal of chemical information and modeling》2007,47(1):104-109
A heuristic and unbiased method for searching optimal geometries of clusters of nonspherical molecules was constructed from the algorithm recently proposed for Lennard-Jones atomic clusters. In the method, global minima are searched by using three operators, interior, surface, and orientation operators. The first operator gives a perturbation on a cluster configuration by moving molecules near the center of mass of a cluster, and the second one modifies a cluster configuration by moving molecules to the most stable positions on the surface of a cluster. The moved molecules are selected by employing a contribution of the molecules to the potential energy of a cluster. The third operator randomly changes the orientations of all molecules. The proposed method was applied to benzene clusters. It was possible to find new global minima for (C6H6)11, (C6H6)14, and (C6H6)15. Global minima for (C6H6)16 to (C6H6)30 are first reported in this article. 相似文献
6.
We have developed a new isobaric-isothermal (NPT) algorithm which applies an external pressure to the facets comprising the convex hull surrounding the system. A Langevin thermostat is also applied to the facets to mimic contact with an external heat bath. This new method, the "Langevin Hull", can handle heterogeneous mixtures of materials with different compressibilities. These systems are problematic for traditional affine transform methods. The Langevin Hull does not suffer from the edge effects of boundary potential methods, and allows realistic treatment of both external pressure and thermal conductivity due to the presence of an implicit solvent. We apply this method to several different systems including bare metal nanoparticles, nanoparticles in an explicit solvent, as well as clusters of liquid water. The predicted mechanical properties of these systems are in good agreement with experimental data and previous simulation work. 相似文献
7.
Lai SF Chen WC Wang CL Chen HH Chen ST Chien CC Chen YY Hung WT Cai X Li E Kempson IM Hwu Y Yang CS Tok ES Tan HR Lin M Margaritondo G 《Langmuir : the ACS journal of surfaces and colloids》2011,27(13):8424-8429
We describe a simple and effective method to obtain colloidal surface-functionalized Au nanoparticles. The method is primarily based on irradiation of a gold solution with high-flux X-rays from a synchrotron source in the presence of 11-mercaptoundecanoic acid (MUA). Extensive tests of the products demonstrated high colloidal density as well as excellent stability, shelf life, and biocompatibility. Specific tests with X-ray diffraction, UV-visible spectrometry, visible microscopy, Fourier transform infrared spectroscopy, dark-field visible-light scattering microscopy, and transmission electron microscopy demonstrated that MUA, being an effective surfactant, not only allows tunable size control of the nanoparticles, but also facilitates functionalization. The nanoparticle sizes were 6.45 ± 1.58, 1.83 ± 1.21, 1.52 ± 0.37 and 1.18 ± 0.26 nm with no MUA and with MUA-to-Au ratios of 1:2, 1:1, and 3:1. The MUA additionally enabled functionalization with l-glycine. We thus demonstrated flexibility in controlling the nanoparticle size over a large range with narrow size distribution. 相似文献
8.
9.
Kim J Lema K Ukaigwe M Lee D 《Langmuir : the ACS journal of surfaces and colloids》2007,23(14):7853-7858
A facile preparative route to alkanethiolate (Cn) Au38 nanoparticles, where n = 4, 6, 8, 10, and 12, is described. Subnanometer-sized nanoparticles are initially produced by a modified Brust synthesis, which undergo core-size evolution upon removal of reaction impurities that have served as additional protecting layers. C4-C12 Au38 nanoparticles are prepared in approximately 300 mg quantities by the selective removal of reaction impurities with dimethyl sulfoxide. The prepared nanoparticles are 1.1-1.2 nm in core size, and all exhibit optical and electrochemical characteristics of Au38 nanoparticles. Voltammetry of these Au38 nanoparticles reveals that the energy gap between the first one-electron oxidation and the first reduction is rather insensitive to the ligand employed. By contrast, the energy gaps between the first and second oxidations and between the second and third oxidations are ligand-dependent; both substantially increase with ligand thickness. The charging energetics of alkanethiolate-coated Au38 nanoparticles can thus be described as a sum of electron addition energies and the discrete electronic energy levels of the Au38 core. 相似文献
10.
Qiu JD Peng HZ Liang RP Li J Xia XH 《Langmuir : the ACS journal of surfaces and colloids》2007,23(4):2133-2137
Au nanoparticles modified with electroactive Prussian blue (PB) were for the first time synthesized by a simple chemical method. Transmission electronic microscopy showed that the average size of the Prussian blue shell/Au core hybrid composite (PB@Au) was about 50 nm, and Fourier transform IR, UV-vis spectra, and cyclic voltammetry confirmed the existence of PB on the surface of Au nanoparticles. Using the LbL technique, multilayer thin films of PB@Au nanoparticles were prepared by the alternate adsorption of oppositely charged linear polyelectrolyte poly(allylamine hydrochloride) (PAH) onto ITO glass for the construction of a hydrogen peroxide sensor. The novel multilayer films were characterized by SEM, cyclic voltammetry, and UV-visible absorption spectroscopy. The {PAH/PB@Au}n multilayer-modified electrode showed a well-defined pair of redox peaks and dramatic catalytic activity toward the reduction of hydrogen peroxide. 相似文献
11.
Llanio-Trujillo JL Marques JM Pereira FB 《The journal of physical chemistry. A》2011,115(11):2130-2138
We have developed an evolutionary algorithm (EA) for the global minimum search of molecular clusters. The EA is able to discover all the putative global minima of water clusters up to (H(2)O)(20) and benzene clusters up to (C(6)H(6))(30). Then, the EA was applied to search for the global minima structures of (C(6)H(6))(n)(+) with n = 2-20, some of which were theoretically studied for the first time. Our results for n = 2-6 are consistent with previous theoretical work that uses a similar interaction potential. Excluding the very symmetric global minimum structure for n = 9, the growth pattern of (C(6)H(6))(n)(+) with n ≥ 7 involves the (C(6)H(6))(2)(+) dimer motif, which is placed off-center in the cluster. Such observation indicates that potentials commonly used in the literature for (C(6)H(6))(n)(+) cannot reproduce the icosahedral-type packing suggested by the available experimental data. 相似文献
12.
毒莠定印迹邻氨基苯硫酚/金纳米粒子复合膜安培传感器 总被引:1,自引:0,他引:1
在模板分子存在下,在金电极上自组装邻氨基苯硫酚(oATP),通过电聚合制得毒莠定印迹的oATP/金纳米粒子聚合薄膜及其安培传感器.采用循环伏安法和交流阻抗技术对传感器制备过程进行表征,用紫外光谱法研究了单体与模板间的相互作用.以K3Fe(CN)6为探针,示差脉冲伏安曲线的峰电流与毒莠定浓度在2.0×10^-7-2.4×10 4mol/L范围内呈现良好的线性关系(r=0.9963),毒莠定的检出限为6.5×10 8mol/L(S/N=3).将该印迹膜传感器用于环境水样加标回收检测,结果令人满意. 相似文献
13.
Clebio S. Nascimento Jr. Cleber P. A. Anconi Juliana F. Lopes Hélio F. Dos Santos Wagner B. De Almeida 《Journal of inclusion phenomena and macrocyclic chemistry》2007,59(3-4):265-277
The hydrated α-cyclodextrin (α-CD) clusters resulting from the following process: nα-CD + n(H2O)6 → α-CDn · 6nH2O, with n = 1, 2, 3, 4, have been investigated using semiempirical (PM3), ab initio Hartree-Fock and Density Functional Theory (BLYP
functional) levels of theory. The largest structure containing 576 atoms and 5,760 contracted basis functions (6-31G(d,p)
basis set) poses as a considerable hard task for quantum chemical calculations. As the number of basis function increases
rapidly with the cluster size, an alternative procedure to make the calculations feasible is certainly welcome, in order to
perform BLYP calculations with an adequate basis set. Through the aid of a computer program that we developed, it became of
practical use the selection of atom by atom basis sets, using the common chemical sense, enabling quantum mechanical calculations
to be performed for very large molecular interacting systems (inclusion complexes), at an affordable computational cost. In
this article we show how an appropriate selection of basis functions, leaving the CHn groups with a minimal basis set and the oxygen atoms (and OH groups) with a better quality basis set, lower considerably
the computational cost with no significant loss in the calculated interaction energies. A regular pattern is observed for
α-CD hydrated monomer, dimer, trimer and tetramer, therefore adding support to the use of this procedure when studying larger
hydrogen bonded clusters where electron correlation effects are important. We show that the procedure reported here enables
DFT calculations for hydrated cyclodextrin using basis set up to the 6-311++G(3df,3pd) triple zeta quality . 相似文献
14.
Pei Y Pal R Liu C Gao Y Zhang Z Zeng XC 《Journal of the American Chemical Society》2012,134(6):3015-3024
Atomic structure of a recently synthesized ligand-covered cluster Au(24)(SR)(20) [J. Phys. Chem. Lett., 2010, 1, 1003] is resolved based on the developed classical force-field based divide-and-protect approach. The computed UV-vis absorption spectrum and powder X-ray diffraction (XRD) curve for the lowest-energy isomer are in good agreement with experimental measurements. Unique catenane-like staple motifs are predicted for the first time in core-stacked thiolate-group (RS-) covered gold nanoparticles (RS-AuNPs), suggesting the onset of structural transformation in RS-AuNPs at relatively low Au/SR ratio. Since the lowest-energy structure of Au(24)(SR)(20) entails interlocked Au(5)(SR)(4) and Au(7)(SR)(6) oligomers, it supports a recently proposed growth model of RS-AuNPs [J. Phys. Chem. Lett., 2011, 2, 990], that is, Au(n)(SR)(n-1) oligomers are formed during the initial growth of RS-AuNPs. By comparing the Au-core structure of Au(24)(SR)(20) with other structurally resolved RS-AuNPs, we conclude that the tetrahedral Au(4) motif is a prevalent structural unit for small-sized RS-AuNPs with relatively low Au/SR ratio. The structural prediction of Au(24)(SR)(20) offers additional insights into the structural evolution of thiolated gold clusters from homoleptic gold(I) thiolate to core-stacked RS-AuNPs. Specifically, with the increase of interfacial bond length of Au(core)-S in RS-AuNPs, increasingly larger "metallic" Au-core is formed, which results in smaller HOMO-LUMO (or optical) gap. Calculations of electronic structures and UV-vis absorption spectra of Au(24)(SR)(20) and larger RS-AuNPs (up to ~2 nm in size) show that the ligand layer can strongly affect optical absorption behavior of RS-AuNPs. 相似文献
15.
Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate-induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O=O, C-H, C=O, and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation-vibrational spectroscopy and high pressure scanning tunneling microscopy revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme, and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional monolayer film or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene, and crotonaldehyde) showed that the reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site that is associated with the hot electron flow induced by exothermic reactions such as carbon monoxide oxidation. 相似文献
16.
The contact line region as affected by the disjoining pressure has been analyzed under the assumption that it can sustain only two types of profiles. Disjoining pressure represents the extra potential in thin films that always exists in the contact angle region where a liquid drop or a wedge thins to meet the solid substrate and in turn affects the contact angle as well as the film profile. It is shown here that the integration of the augmented Young-Laplace equation to yield the above types of drop profiles under the action of disjoining pressure leads to the usual conditions of equilibrium as well as the condition of stability in the same analysis. Other inequality constraints are obtained where the stability condition does not apply. The fact that stability condition coexists with the conditions of equilibrium is pursued to show in one case that the stability modifies half of the predicted outcomes in the drop shapes. In addition, exceptions to the rule are found, which are physically meaningful, and a scale-dependent equilibrium is reported for the first time. 相似文献
17.
Brookes MD Xia C Tang J Anstey JA Fulsom BG Au Yong KX King JM McKellar AR 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2004,60(14):629-3242
The design and operation of an apparatus for studying infrared spectra of weakly-bound complexes is described in detail. A pulsed supersonic jet expansion is probed using a tunable Pb-salt diode laser spectrometer operated in a rapid-scan mode. The jet may be fitted with either pinhole or slit shaped nozzles, the former giving lower effective rotational temperatures, and the latter giving sharper spectral lines. Notable features of the apparatus include use of a toroidal multi-pass mirror system to give over 100 passes of the laser through the supersonic jet, use of the normal laser controller for laser sweeping during both setup and data acquisition, and use of a simple semi-automated wavenumber calibration procedure. Performance of the apparatus is illustrated with observed spectra of the van der Waals complex He-OCS, and the seeded helium clusters He(N)-OCS and He(N)-CO. 相似文献
18.
We report a novel strategy for the synthesis of magnetic nanocomposite for highly efficient catalysis. Poly(glycidyl methacrylate) (PGMA) chains were grafted to the surface of magnetic nanoparticles (MNPs) through surface-initiated reversible addition-fragmentation chain transfer polymerization. Then, the oxirane rings in the PGMA chains were opened with 2,6-diamino pyridine (DAP) molecules as ligands to prepare the solid support. Finally, this magnetic nanocomposite was used for the immobilization of gold nanoparticles. Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, gel permeation chromatography, vibrating sample magnetometry, and atomic absorption spectroscopy were used for characterization of the catalyst. The loading of gold nanoparticles on the solid support was 0.52 mmol/g. The catalytic activity of the prepared catalyst (MNP@PGMA@DAP@Au) was evaluated for the reduction of nitro compounds and C–C coupling reaction in water. The catalyst can be easily recovered and reused seven times without significant loss of catalytic activity. 相似文献
19.
A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L−1 to 0.037 μg L−1. The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L−1 and 20 μg L−1 ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates. 相似文献
20.
A completely automated algorithm for performing many-body interaction energy analysis of clusters (MBAC) [M. J. Elrodt and R. J. Saykally, Chem. Rev. 94, 1975 (1994); S. S. Xantheas, J. Chem. Phys. 104, 8821 (1996)] at restricted Hartree-Fock (RHF)/MA Plesset 2nd order perturbation theory (MP2)/density functional theory (DFT) level of theory is reported. Use of superior guess density matrices (DM's) for smaller fragments generated from DM of the parent system and elimination of energetically insignificant higher-body combinations, leads to a more efficient performance (speed-up up to 2) compared to the conventional procedure. MBAC approach has been tested out on several large-sized weakly bound molecular clusters such as (H(2)O)(n), n=8, 12, 16, 20 and hydrated clusters of amides and aldehydes. The MBAC results indicate that the amides interact more strongly with water than aldehydes in these clusters. It also reconfirms minimization of the basis set superposition error for large cluster on using superior quality basis set. In case of larger weakly bound clusters, the contributions higher than four body are found to be repulsive in nature and smaller in magnitude. The reason for this may be attributed to the increased random orientations of the interacting molecules separated from each other by large distances. 相似文献