首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
基于FPGA的DDS信号源设计   总被引:1,自引:0,他引:1  
介绍了DDS(直接数字合成)信号源的原理及组成,给出了VHDL(甚高速集成电路硬件描述语言)源代码,并探讨了在设计中应注意的事项。文中介绍的设计方法和代码已经过实验验证。采用VHDL在FPGA(现场可编程门阵列)器件上完成数字系统的设计,可以大大简化设计过程,提高设计效率,并可以根据实际要求进行灵活修改,充分显示了EDA(电子设计自动化)技术的特点与优势。  相似文献   

2.
针对传统的遥测信号源缺乏灵活可配置性、通用性差的问题,提出采用FPGA和DDS技术为核心设计灵活可配置的可编程遥测信号源。该信号源的硬件电路主要由低成本FPGA芯片和DDS芯片组成,采用Verilog语言进行编程,使FPGA控制核心输出不同的相位、频率、波形等控制字信息给DDS芯片,经DDS芯片后输出所需波形。仿真表明,该信号源能够输出频率范围在0~12.5MHz的频率、相位可调的正弦波、三角波、方波等波形信号,具有一定的通用性。  相似文献   

3.
基于AD9858的雷达信号源设计与实现   总被引:1,自引:0,他引:1  
文中首先介绍DDS技术的基本原理,然后介绍AD公司的一款高性能DDS芯片AD9858的应用,最后将AD9858与可编程门阵列(FPGA)相结合,设计了一种低杂散,低相位噪声,灵活可变的雷达信号源发生器,本文详细阐述了该系统的设计方案和工程实现.  相似文献   

4.
齐彩利  宋鹏  齐建中 《无线电工程》2010,40(4):19-21,25
某型号遥测数据采集器在实验和测试时,需要开发一种能够产生多种输入信号的信号源。由单片机作为控制核心,基于FPGA、利用直接频率合成技术产生8路正弦信号。信号源各路信号的频率和幅度均可调,通过键盘设置可以5Hz为一个步进设定各个正弦信号的频率,液晶显示器能够显示当前状态和各个信号的频率。此信号源能同时实现多路信号的输出,信号精度高,在其他测试实验中也具有良好的应用前景。  相似文献   

5.
针对重离子加速器(HIRFL)的低电平相幅稳定系统,设计了以同步置位直接数字频率合成器(DDS)技术为基础的同步相位信号源作为系统的不同频、严相位的基准信号源。以FPGA芯片为核心,采用VHDL语言设计各功能模块,简化了设计过程,便于升级。经过电路设计、模块仿真和现场测试,验证了设计的正确性。测试结果表明:该系统具有可靠性高、精度高、稳定度高、频率范围宽、便于控制等优点。  相似文献   

6.
设计并实现了一种基于直接数字合成技术的信号源。因利用高性能FPGA芯片和板上大规模存储阵列,使该信号源可以按照直接数字频率合成(DDFS)和直接数字波形合成(DDWS)两种工作模式产生信号。首先阐述整个信号源的硬件基本结构,然后论述各个关键模块的具体设计,最后通过测试表明该信号源不仅可以产生线性调频、相位编码等各种常规信号,还可以产生各种自定义的复杂波形信号,且各项性能指标均达到设计要求。  相似文献   

7.
基于DSP Builder的DDS信号源设计   总被引:1,自引:1,他引:0  
在DDS原理的基础上详细阐述了应用Altera公司推出的DSP Builder和QuartusⅡ软件,采用FPGA实现产生正弦波、三角波和方波的多波形信号源的设计,经验证此设计可行、有效。  相似文献   

8.
由于具有转换时间快、频率精度高、频带宽等优点,DDS已经在宇航、雷达、通信、电子战等系统得到广泛应用。然而,随着高科技领域新的发展,DDS的各项性能指标已不能完全满足实际的需要,特别是DDS输出频谱杂散较大是其固有的缺陷。如何提高DDS的整体性能指标,进一步减少占用的寄存器资源,减小系统的复杂程度,对其杂散进行正确分析并有效抑制等成为DDS发展的重要课题。基于此,本文对基于FPGA的DDS多路信号源设计进行了研究,希望能提供一些有益的思考。  相似文献   

9.
基于FPGA和DDS的数控信号源的设计与实现   总被引:1,自引:0,他引:1  
以FPGA为核心,根据DDS原理设计数控信号源,采用VHDL语言实现各功能模块。该信号源可输出正弦波、方波和三角波,输出信号的频率以数控方式调节,幅度连续可调。与传统信号源相比,该信号源具有波形质量好、精度高、设计方案简洁、易于实现、便于扩展与维护的特点。  相似文献   

10.
郭志俊 《电子设计工程》2012,20(21):112-115
介绍了基于LPC2132为主控芯片的数字信号发生器的设计方法,分别采用直接数字频率合成(DDS)芯片和可编程逻辑器件(CPLD)产生正弦波、方波和三角波,并设计了模拟信号放大与增益控制电路。通过键盘可方便的切换不同信号,实现了波形稳定、精度较高、幅频在规定范内可调的新型数字信号源。  相似文献   

11.
基于AD9957的双通道高速数字调制信号源设计   总被引:5,自引:0,他引:5  
介绍了ADI公司具有内部调制功能的高速DDS器件AD9957的特点与应用,并提出了一种全新的高速调制信号源设计方案,给出了硬件结构框图和软件流程,详细介绍了系统工作原理.实践证明,输出正弦波最高频率达400 MHz,调制波调制速度可达1 MHz.  相似文献   

12.
为了满足日常教学实验中对各种波形的需求,在实验室现有条件的基础上,采用基于DDS的芯片AD9851作为产生信号的核心,来完成一款多功能波形的信号源的设计。该信号源能产生宽范围频率的正弦波,以及占空比可调的方波,经实际电路测试,输出信号已达到设计需求,能够满足大多数实验的需求,且性能稳定,使用方便,并节约了成本。  相似文献   

13.
频率合成技术是目前研制信号源的关键技术,文中介绍了一种基于直接数字频率合成技术的信号源的实现,信号产生选用DDS专用芯片AD9852,详细介绍了信号产生模块、人机交互模块和控制与数据处理模块的设计与实现,并给出了软件控制框图。利用该技术研制的信号源精度高、频率范围宽,结构简单、使用方便、交互性好,性能稳定可靠。  相似文献   

14.
李兴武 《电声技术》2014,38(11):64-67
基于DDS(直接数字频率合成技术)和触摸屏设计水声信号源具有频率切换速度快,频率分辨率高,输出相位噪声低和产生任意波形等优点。通过触摸屏和单片机控制信号产生,采用FPGA构建DDS,并在QuartusⅡ平台下完成设计和仿真。经测试通过触摸屏输入信标和各脉冲参数可以同步产生水声跟踪系统中任意信号。  相似文献   

15.
为了校准相控阵雷达的接收信道,设计出一种基于DDS的弱信号源。采用单片机和FPGA控制DDS芯片AD9852产生脉冲线性调频与单频连续波信号,单片机的并口接口提供初始化DDS的寄存器设置,FPGA提供DDS的寄存器地址及控制信号,更主要的是提供时序控制脉冲触发信号源的输出和关断。结果表明,信号源可以输出幅度为-45 dBm、杂散优于70 dB的弱信号,完全满足校准相控阵雷达接收信道的性能要求,而且具有结构简单、可编程、可扩展、性能好、系统稳定及实用性强等优点。该设计同样适用于其他多信道接收工程。  相似文献   

16.
在现代雷达系统中,雷达信号源是重要的组成部分,必不可少,对雷达整体性能的发挥起着至关重要的作用,不容忽视。直接数字合成技术(DDS)是当前比较全新的频率合成技术,其主要优势集中体现在相位分辨率与频率捷变方面。文章主要在DDS理论基础上,设计分析了多模块雷达信号源。在这种技术中,可以实现LFM、NLFM等多种脉冲信号波形,达到对脉冲压缩与信号的高效处理。  相似文献   

17.
为了校准极化雷达的接收通道,设计并实现了一种基于DDS软件编程技术的极化雷达校准信号源系统。给出了主要的硬件电路和软件设计方案。该系统将FPGA技术与DDS技术结合,在FPGA内部软件编程实现改进的DDS模块,充分利用了FPGA作为大规模芯片的资源优势和高速运算能力。系统能够产生高精度且稳定的任意雷达校准信号,可满足极化雷达标校的应用。  相似文献   

18.
信号产生技术是雷达研究中的一个重要部分。传统信号源在联调时一般是固定几组参数,通过外部选择实现多参数、多波形的输出,存在波形参数修改不便的缺点,本文介绍了一种基于PCI总线通用宽带雷达信号源的设计和实现方法,采用了专用的PCI接口芯片和FPGA结合,实现了接口芯片与DDS的时序控制逻辑,可直接产生单频、线性调频等多种信号;同时还介绍了WDM驱动程序和上层控制软件的编写。该信号源具有即插即用、软件灵活修改波形参数、通用性强的优点。  相似文献   

19.
基于FPGA的信号源设计与实现   总被引:4,自引:0,他引:4  
宋晶晶 《无线电工程》2003,33(4):27-29,32
简单介绍了FPGA技术,以及基于FPGA、采用VHDL进行设计的信号源核心数字电路的实现过程。测试结果表明设计方法正确、实现手段可行。  相似文献   

20.
姚凯男  赵峥  关昕  唐艳秋 《现代电子技术》2009,32(23):115-117,120
该设计目的在于给出一型高性能键控信号源的设计方案,设计中采用直接数字频率合成方法,以DDS芯片AD9951作为核心芯片,以AD9951作为主控制器,设计一种通过键盘控制、液晶显示输出频率与波形的信号源。该设计可以输出频率为0.1kHz-80MHz的正弦波方渡和三角波。实验结果表明,硬件电路结构简单,软硬件拓展性好,输出信号频率稳定,分辨率高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号