共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
甲壳素/壳聚糖在环境治理上的应用 总被引:4,自引:0,他引:4
天然高分子化合物甲壳素、壳聚糖具有原料丰富、无毒、易于生物降解等优点,国内外众多学者对它的开发应用展开研究,本文综述了甲壳素、壳聚糖及其衍生物对环境污染物的去除,介绍了它在环境治理尤其是废水处理中的研究和应用情况。 相似文献
7.
壳聚糖接枝共聚改性最新研究进展 总被引:1,自引:0,他引:1
壳聚糖是一种天然高分子,也是迄今为止唯一发现的阳离子碱性多糖。壳聚糖分子链中富含羟基和氨基等反应性官能团,具有生物相容性、生物可降解性、抗菌性、无细胞毒性等优良性能,在生化、医药、环保、农业等领域有广泛的应用前景。然而,由于其大分子具有较好的立构规整性和较强的氢键作用,除稀盐酸、稀醋酸外,壳聚糖不溶于水和其它有机溶剂,因而限制了它的应用范围。为了扩大其应用领域,常通过接枝共聚反应来改善壳聚糖的性能。本文介绍了壳聚糖接枝共聚改性的最新研究进展,包括自由基引发接枝法、偶联接枝法以及催化接枝法。 相似文献
8.
9.
10.
11.
12.
A novel redox system, potassium ditelluratocuprate(III) (DTC)–chitosan, was employed to initiate the graft copolymerization of methyl methacrylate (MMA) onto chitosan in alkali medium. The effects of reaction variables, such as the initiator concentration, ratio of monomer to chitosan, the pH value, as well as reaction temperature and time were investigated, and the grafting conditions were optimized. Graft copolymers with both high grafting efficiency (>90%) and percentage of grafting were obtained, and the rate of polymerization is higher, which indicated that the DTC–chitosan redox system is an efficient initiator for this graft copolymerization. The structures and the thermal property of chitosan and chitosan–g–PMMA were characterized by infrared spectroscopy (IR), X‐ray diffraction and thermogravimetric analysis (TGA). A mechanism is proposed to explain the generation of radicals and the initiation. The graft copolymer was used as the compatibilizer in blends of terpolyamide and chitosan. The scanning electron microscope (SEM) photographs indicated that the graft copolymer improved the compatibility of the blend. 相似文献
13.
14.
15.
Photoinitiated graft copolymerization of acrylamide onto chitosan under heterogeneous conditions and in the absence of a photo initiator was investigated. The effect of irradiation time, the amount of chitosan and monomer concentration on the extent of grafting was examined. The maximum grafting percentage obtained was 294%. The copolymer was characterized using carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy, X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The system designed allows synthesis of grafted chitosan with free amine groups which are otherwise possible only by chemical protection. The swelling properties of copolymer were followed in aqueous solution. 相似文献