首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A sensitive and selective method for the simultaneous determination of copper and bismuth by adsorptive stripping was developed using nuclear fast red (2-anthracenesulfonic acid, 4-amino-9,10-dihydro-1,3-dihydroxy-9,10-dioxo-, monosodium salt) as selective complexing agent onto hanging mercury drop electrode. In a single scan both metals gave peaks that were distinctly separated by 85 mV allowing their determination in the presence of each other. Optimal analytical conditions were found to be: nuclear fast red concentration of 80 μM, pH of 2.8 and adsorptive potential of −300 mV versus Ag/AgCl. With accumulation time of 180 s the peaks currents are proportional to concentration of copper and bismuth over the 1-100 and 5-60 ng mL−1 range with detection limits of 0.2 and 1.2 ng mL−1, respectively. The procedure was applied to simultaneous determination of copper and bismuth in some real samples.  相似文献   

2.
A sensitive and selective method for the simultaneous determination of copper, zinc and lead is presented. The method is based on the adsorptive accumulation of 2′,3,4′,5,7-pentahydroxyflavone (Morin) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. Optimal analytical conditions were found to be Morin concentration of 2.0 μM, pH of 4.0, and an adsorption potential at −500 mV versus Ag/AgCl. With an accumulation time of 60 s, the peak currents are proportional to the concentration of copper, lead and zinc over the 1 to 60, 0.3-80 and 1-70 ng ml−1 range with detection limits of 0.06, 0.08 and 0.06 ng ml−1, respectively. The procedure was applied to the simultaneous determination of copper, lead and zinc in some real and synthetic artificial real samples with satisfactory results.  相似文献   

3.
Mahajan RK  Walia TP  Sumanjit  Lobana TS 《Talanta》2005,67(4):755-759
The adsorptive cathodic stripping voltammetry technique (AdCSV) is used to determine copper(II) using salicylaldehyde thiosemicarbazone (N, S- donor) as a complexing agent on hanging mercury drop electrode at pH 9.3. Variable factors affecting the response, i.e. the concentration of ligand, pH, adsorption potential and adsorption time are assessed and optimized. The adsorbed complex of copper(II) and salicylaldehyde thiosemicarbazone gives a well defined cathodic stripping peak current at −0.35 V, which has been used for the determination of copper in the concentration range of 7.85 × 10−9 to 8.00 × 10−6 M with accumulation time of 360 s at −0.1 V versus Ag/AgCl. This technique has been applied for the determination of copper in various digested samples of whole blood at trace levels.  相似文献   

4.
A sensitive anodic stripping voltammetric procedure at the bismuth film electrode (BFE) for trace analysis of copper (II) in the presence of gallium is presented. The new protocol circumvents the problems of overlapping stripping signals between copper and bismuth that previously hampered the analysis of copper at the BFE. The results illustrate that the addition of gallium not only improves the reproducibility of the bismuth stripping signal but also facilitates much improved resolution between the stripping signals of bismuth and copper. Investigations into the effect of gallium on the stripping response of copper and bismuth were studied showing a 4:1 gallium:copper mole ratio produces optimum signals from bismuth and copper indicating a possible stoichiometric relationship. Optimisation of other key variables including electrolyte composition, accumulation parameters and appropriate waveform settings were studied and optimised. The optimised procedures show a range of linear calibration plots (R2 > 0.994) ranging from 2 to 500 μg L−1 and the relative standard deviation for a solution containing 100 μg L−1 copper was 3.7% (n = 10). Utilising an accumulation time of 300 s the limit of detection was 1.4 μg L−1 (S/N = 3). This technique was successfully applied to the analysis of copper in tap water representing the first successful copper determination in real samples using the BFE.  相似文献   

5.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of copper, bismuth and lead is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of copper, lead and bismuth were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 4.0 microM, pH of 9.0, and accumulation potential at -800 mV vs. Ag/AgCl with an accumulation time of 80 s. The peak currents are proportional to the concentration of copper, bismuth and lead over the 0.4-300, 1-200 and 1-100 ng mL(-1) ranges with detection limits of 0.4, 0.8 and 0.7 ng mL(-1), respectively. The procedure was applied to the simultaneous determination of copper, bismuth and lead in the tap water and some synthetic samples with satisfactory results.  相似文献   

6.
A reliable and sensitive procedure for the simultaneous determination of trace levels of copper and molybdenum is proposed. The complexing of copper(II) and molybdenum(VI) with pyrogallol red (PGR) is analyzed by cathodic stripping differential pulse voltammetry based on the adsorption collection of the complexes onto a hanging mercury drop electrode (HMDE). The effect of chemical and instrumental parameters on the sensitivity and selectivity were studied. Copper and molybdenum peaks potential were observed at about +0.13 and −0.22 V versus Ag/AgCl electrode, respectively. A standard addition method was utilized for the analysis of voltammogram data, under the optimum conditions and with accumulation time of 90 s. The measured peak current at about +0.14 and −0.22 V is proportional to the concentration of Cu(II) and Mo(VI) over the range of 2-70 and 0.8-80 ng ml−1, respectively. The limit of detection are 0.3 and 0.1 ng ml−1 for Cu(II) and Mo(VI), respectively. The capability of the method for the analysis of real samples was evaluated by determination of copper and molybdenum in river water, tap water and alloy. Atomic absorption spectrometry was applied as a reference method for determination of copper and molybdenum in water samples.  相似文献   

7.
Safavi A  Maleki N  Shahbaazi HR 《Talanta》2006,68(4):1113-1119
A sensitive method for the determination of chromium ion(VI) in complex matrices such as crude oil and sludge is presented based on the decreasing effect of Cr(VI) on cathodic adsorptive stripping peak height of Cu-adenine complex. Under the optimum experimental conditions (pH 7.5 Britton-Robinson buffer, 5 × 10−5 M copper, 8 × 10−6 M adenine and accumulation potential −250 mV versus Ag/AgCl), a linear decrease of the peak current of Cu-adenine was observed, when the chromium(VI) concentration was increased from 5 μg L−1 to 120 μg L−1. Detection limit of 2 μg L−1 was achieved for 120 s accumulation time. The relative standard deviations (R.S.D., %) were 1.8% and 4% for chromium(VI) concentrations of 18 μg L−1 and 100 μg L−1, respectively. The method was applied to the determination of chromium(VI) in the presence of high levels of chromium(III), in various real samples such as crude oil, crude oil tank button sludge, waste water and tap water samples. Effects of foreign ions and surfactants on the voltammetric peak and the influences of instrumental and analytical parameters were investigated in detail. The accuracy of the results was checked by ICP and/or AA.  相似文献   

8.
Ion selective electrodes (ISE) are used extensively for the potentiometric determination of ion concentrations in electrolytes. However, the inherent drift in these measurements and the requirement of a stable reference electrode restrict the feasibility of this method for long-term in-situ applications. This work presents a chronopotentiometric approach to minimize drift and avoid the use of a conventional reference electrode for measuring chloride ion concentration. An anodic current pulse is applied to a Ag/AgCl working electrode which initiates a faradaic reaction that depletes the chloride ions near the electrode surface. The rate of change in potential at the Ag/AgCl electrode, due to chloride ion depletion, reaches an inflection point once the chloride ions deplete completely near the electrode surface. The moment of the inflection point, also known as the transition time, is a function of the chloride ion concentration and is described by the Sand equation. It is shown that the square root of the transition time is linearly proportional to the chloride ion concentration. Drift in the response over two weeks is negligible: 59 μM/day when measuring 1 mM of Cl ions using a 10 A m−2 current pulse. The transition time at a specific ion concentration can be tuned by the applied current pulse, e.g., in a solution containing 5 mM chloride ions, the transition times with current pulses of 10 and 20 A m−2 are 1.56 and 0.25 s, respectively. The moment of inflection determines the response, and thus is independent of the absolute potential of reference electrode. Therefore, any metal wire can act as a pseudo-reference electrode, enabling this approach for long-term and integrated-sensor applications such as measurement inside concrete structures.  相似文献   

9.
Niazi A  Ghasemi J  Zendehdel M 《Talanta》2007,74(2):247-254
An adsorptive differential pulse stripping method for the simultaneous determination of morphine and noscapine is proposed. The procedure involves an adsorptive accumulation of morphine and noscapine on a hanging mercury drop electrode (HMDE), followed by oxidation of adsorbed morphine and noscapine by voltammetric scan using differential pulse modulation. The optimum experimental conditions are: pH 10.0, accumulation potential of −100 mV versus Ag/AgCl, accumulation time of 150 s, scan rate of 40 mV s−1 and pulse height of 100 mV. Morphine and noscapine peak currents were observed in same potential region at about +0.25 V. The simultaneous determination of morphine and noscapine by using voltammetry is a difficult problem in analytical chemistry, due to voltammogram interferences. The resolution of mixture of morphine and noscapine by the application of least-squares support vector machines (LS-SVM) was performed. The linear dynamic ranges were 0.01-3.10 and 0.015-2.75 μg mL−1 and detection limits were 3 and 7 ng mL−1 for morphine and noscapine, respectively. The capability of the method for the analysis of real samples was evaluated by the determination of morphine and noscapine in addict's human plasma with satisfactory results.  相似文献   

10.
Goyal RN  Bishnoi S  Chasta H  Aziz MA  Oyama M 《Talanta》2011,85(5):2626-2631
The effect of surface modification of indium tin oxide (ITO) by multi wall carbon nanotube (MWNT) and gold nanoparticles attached multi wall carbon nanotube (AuNP-MWNT) has been studied to determine tryptophan, an important and essential amino acid for humans and herbivores. A detailed comparison has been made among the voltammetric response of bare ITO, MWNT/ITO and AuNP-MWNT/ITO in respects of several essential analytical parameters viz. sensitivity, detection limit, peak current and peak potential of tryptophan. The AuNP-MWNT/ITO exhibited a well defined anodic peak at pH 7.2 at a potential of ∼669 mV for the oxidation of tryptophan as compared to 760 mV at MWNT/ITO electrode. Under optimum conditions linear calibration curve was obtained over tryptophan concentration range 0.5-90.0 μM in phosphate buffer solution of pH 7.2 with detection limit and sensitivity of 0.025 μM and 0.12 μA μM−1, respectively. The oxidation of tryptophan occurred in a pH dependent, 2e and 2H+ process and the electrode reaction followed adsorption controlled pathway. The method has been found selective and successfully implemented for the determination of tryptophan in human urine and plasma samples using standard addition method. The electrode exhibited an efficient catalytic response with good reproducibility and stability.  相似文献   

11.
Zhao J  Wang F  Yu J  Hu S 《Talanta》2006,70(2):449-454
A novel copper incorporated self-assembled monolayers (SAMs) modified gold electrode (Cu/SAMs) for determination of glucose was developed by electrodepositing Cu particles on the SAMs of hexanethiol. The scanning electron microscopic (SEM) images showed that copper formed orbicular particles of nanosizes on the SAMs, which was much different from the fractal-like particles of copper formed at gold electrode. The Cu/SAMs film electrode exhibited high sensitivity to glucose oxidation and depressed responses towards some interferents of glucose in blood like uric acid and ascorbic acid. Under optimal working conditions, the oxidation current of glucose was proportional to the concentration of glucose in the range from 3.0 μM to 10 mM by amperometry with a low detection limit of 0.7 μM glucose (S/N = 3). This electrode was successfully applied to the determination of glucose in rat blood and the results were satisfactory.  相似文献   

12.
This works reports the use of square-wave adsorptive stripping voltammetry (SWAdSV) for the simultaneous determination of Ni(II) and Co(II) on a rotating-disc bismuth-film electrode (BFE). The metal ions in the non-deoxygenated sample were complexed with dimethylglyoxime (DMG) and the complexes were accumulated by adsorption on the surface of the BFE. The stripping step was carried out by using a square-wave potential-time voltammetric excitation signal. Electrochemical cleaning of the bismuth film was employed, enabling the same bismuth film to be used for a series of measurements. The experimental variables (choice of the working electrode substrate, the presence of oxygen, the DMG concentration, the buffer concentration, the preconcentration potential, the accumulation time, the rotation speed and the SW parameters) as well as potential interferences were investigated and the figures of merit of the methods were established. Using the selected conditions, the 3σ limits of detection were 70 ng l−1 for Co(II) and 100 ng l−1 for Ni(II) (for 300 s of preconcentration) and the relative standard deviations were 2.3% for Co(II) and 3.9% for Ni(II) at the 2 μg l−1 level (n = 8). Finally, the method was applied to the determination of nickel and cobalt in real samples with satisfactory results.  相似文献   

13.
In this work, a simple and sensitive electroanalytical method was developed for the determination of enrofloxacin (ENRO) by adsorptive cathodic stripping voltammetry (ADSV) using Cu(II) as a suitable probe. The complex of copper(II) with ENRO was accumulated at the surface of a hanging mercury drop electrode at −0.10 V for 40 s. Then, the preconcentrated complex was reduced and the peak current was measured using square wave voltammetry (SWV). The optimization of experimental variables was conducted by experimental design and support vector machine (SVM) modeling. The model was used to find optimized values for the factors such as pH, Cu(II) concentration and accumulation potential. Under the optimized conditions, the peak current at −0.30 V is proportional to the concentration of ENRO over the range of 10.0-80.0 nmol L−1 with a detection limit of 0.33 nmol L−1. The influence of potential interfering substances on the determination of ENRO was examined. The method was successfully applied to determination of ENRO in plasma and pharmaceutical samples.  相似文献   

14.
Uranium (VI) (U(VI)) forms a complex with dipicolinic acid (2, 6-pyridinedicarboxylic acid).This complex can be used for a highly sensitive and selective determination of uranium by adsorptive cathodic stripping voltammetry (ACSV) using a hanging mercury drop electrode (HMDE) as working electrode. Influence of effective parameters such as pH, concentration of ligand, accumulation potential and accumulation time on the sensitivity and selectivity were studied. The detection limit (3σ of the blank value) obtained under the optimal experimental conditions is 0.27 × 10−9 M after 150 s of the accumulation time. The peak current is proportional to the concentration of U(VI) in the range of 1 × 10−9 to 1.2 × 10−7 M. The relative standard deviation of 2.5% at the 3.5 × 10−8 M level was obtained. The interference of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in synthetic and natural water samples.  相似文献   

15.
Wang J  Lu D  Thongngamdee S  Lin Y  Sadik OA 《Talanta》2006,69(4):914-917
Bismuth-coated glassy carbon electrodes have been successfully applied for catalytic adsorptive stripping voltammetric measurements of low levels of vanadium(V) in the presence of chloranilic acid (CAA) and bromate ion. The new protocol is based on the accumulation of the vanadium-chloranilic acid complex from an acetate buffer (pH 5.5) solution at a preplated bismuth film electrode held at −0.35 V (versus Ag/AgCl), followed by a square-wave voltammetric scan. Factors influencing the adsorptive stripping performance, including the CAA and bromate concentrations, solution pH, and accumulation potential or time have been optimized. The response compares favorably with that observed at mercury film electrodes. A linear response is observed over the 5-25 μg/L concentration range (2 min accumulation), along with a detection limit of 0.20 μg/L vanadium (10 min accumulation). High stability is indicated from the reproducible response of a 50 μg/L vanadium solution (n = 25; R.S.D. = 3.1%). Applicability to a groundwater sample is illustrated.  相似文献   

16.
Svancara I  Foret P  Vytras K 《Talanta》2004,64(4):844-852
A procedure for the determination of chromium is described based on synergistic pre-concentration of the chromate anion at a carbon paste electrode modified in situ with quarternary ammonium salts such as 1-ethoxycarbonylpentadecyltrimethylammonium bromide (Septonex®), cetyltrimethylammonium bromide (CTAB) or cetylpyridinium bromide (CPB). The proper electrochemical detection utilises the reduction Cr(VI) → Cr(III) performed in the differential pulse cathodic voltammetric mode. In discussion, considerable attention has been paid to the accumulation mechanism at the carbon paste electrode in the presence of surfactants. Furthermore, after optimising the corresponding experimental conditions (0.1-0.3 M HCl + 0.1 M NaCl as the supporting electrolyte, 2.5-25 μM as the total concentration of modifier, pre-concentration at +0.7 V versus Ag/AgCl and the stripping from +0.7 to −0.4 V), the analytical performance of the method has been evaluated. The signal of interest was reproducible within ±8% and proportional to the concentration in a range of 0.5-50 μM CrO42−, with a limit of detection (S/N = 3:1) of about 5×10−8 M CrO42− (with accumulation for 300 s). Interference studies were focused mainly on the species capable of forming ion-pairs with the modifier; i.e., TlCl4, AuCl4, PdCl42−, PtCl62−, VO43−, MnO4 and I. Practical applicability of the method was tested on model solutions via the recovery rates (typically 90-110%) or using selected certified reference materials (tea, bush leaves, clover) and two samples of black tea when the respective results were compared to those obtained by the reference determinations with ICP-AES.  相似文献   

17.
Yasri NG  Halabi AJ  Istamboulie G  Noguer T 《Talanta》2011,85(5):2528-2533
A new simple chronoamperometry methodology was developed for the ultrasensitive determination of lead ions using a PEDOT:PSS coated graphite carbon electrode. The polymer was directly coated on a graphite carbon electrode and characterized using simple cycle voltammetric measurements. The presence of lead ions induced a cathodic peak starting at −550 ± 10 mV vs. Ag/AgCl, and an anodic peak starting at −360 ± 10 mV vs. Ag/AgCl. Electroaccumulation of lead ions onto the PEDOT:PSS modified electrode was performed at −650 mV vs. Ag/AgCl for 30 s in a pH 2.2 hydrochloric acid solution. Chronoamperometry measurements were carried out at −350 mV vs. Ag/AgCl allowing the oxidation of accumulated lead. Using this method, lead ions were detected for concentrations ranging between 2.0 nmol L−1 and 0.1 μmol L−1 (R2 = 0.999). The detection limit was calculated to be 0.19 nmol L−1 and the quantification limit of 0.63 nmol L−1. The method was shown to be highly precise and sensitive, negligible interference was detected from other metal ions. The proposed method was successfully applied for the detection of lead ions in vegetables.  相似文献   

18.
This paper describes the fabrication, characterisation and the application of a Nafion/2,2′-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn2+, Cd2+ and Pb2+). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2′-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at −1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2′-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm−3) for Zn2+, 1.1 nM (0.12 μg dm−3) for Cd2+ and 0.37 nM (0.077 μg dm−3) for Pb2+. For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique.  相似文献   

19.
Li D  Jia J  Wang J 《Talanta》2010,83(2):332-336
A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L−1 for Cd(II) and 0.02 μg L−1 for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples.  相似文献   

20.
A highly sensitive adsorptive stripping voltammetric protocol for measuring trace beryllium, in which the preconcentration is achieved by adsorption of the beryllium-arsenazo-I complex at a preplated mercury-coated carbon-fiber electrode, is described. Optimal conditions were found to be a 0.05 M ammonium buffer (pH 9.7) containing 5 μM arsenazo-I, an accumulation potential of 0.0 V (versus Ag/AgCl) and a square-wave voltammetric scan. The new procedure obviates the need for renewable mercury-drop electrodes used in early stripping protocols for beryllium. A linear response is observed over the 10-60 μg l−1 concentration range (90 s accumulation), along with a detection limit of 0.25 μg l−1 beryllium (10 min accumulation). A 15-s electrochemical cleaning enables the same mercury film to be used for a prolonged operation. High stability is thus indicated from the reproducible response of a 100 μg l−1 beryllium solution (n = 60; RSD = 3.3%) over a 2.5-h operation. Applicability to a seawater sample is illustrated. The attractive behavior of the new sensor holds great promise for on-site environmental and industrial monitoring of beryllium. Preliminary data in this direction using mercury-coated screen-printed electrodes are encouraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号