首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous determination of hydrazine (HZ) and thiosemicarbazide (TSC) by partial least squares (PLS) and principle component regression (PCR) was carried out based on kinetic data of novel potentiometry. The rate of chloride ion production in reaction of HZ and TSC with N‐chlorosuccinimide (NCS) was monitored by a chloride ion‐selective electrode. The experimental dada shows not only the good ability of ion‐selective electrodes (ISEs) as detectors for the direct determination of chloride ions but also for simultaneous kinetic‐potentiometric analysis using chemometrics methods. The methods are based on the difference observed in the production rate of chloride ions. The results show that simultaneous determination of HZ and TSC can be performed in their concentration ranges of 0.7‐20.0 and 0.5‐20.0 μg mL?1, respectively. The total relative standard error for applying PLS and PCR methods to 9 synthetic samples in the concentration ranges of 0.8‐10 μg mL?1 of TSC and 1.0‐12.0 μg mL?1 of HZ was 4.62 and 4.98, respectively. The effects of certain foreign ions upon the reaction rate were determined for the assessment of the selectivity of the method. Both methods (PLS and PCR) were validated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ and TSC in water samples.  相似文献   

2.
A procedure for the simultaneous kinetic spectrophotometric determination of cephalexin and trimethoprim was described. It was based on the different reaction rate of oxidation of these compounds with yellow ammonium cerous (Ⅳ) sulfate in acidic medium and colorless cerous (Ⅲ) sulfate was produced. The overlapped kinetic data was quantitatively resolved by the use of chemometric methods, partial least squares (PLS), principal component regression (PCR) and radial basis function-artificial neural network (RBF-ANN). The proposed method was also applied to the simultaneous determination of cephalexin and trimethoprim in pharmaceutical preparation and human urine with satisfied results, which compared well with those obtained by HPLC.  相似文献   

3.
Simultaneous kinetic‐spectrophotometric determination of a ternary mixture of hydrazine (HZ) and its derivatives by principal component regression (PCR) and partial least squares (PLS) calibration is described. The methods were based on the difference observed in the reduction rate of iron(III) with HZ, thiosemicarbazide (TSCZ) and phenylhydrazine (PHZ) in the presence of 2,2′‐bipyridine (Bpy). The colored complex of [Fe(Bpy)3]2+ was formed in sodium dodecyl sulfate (SDS) as micellar media, and then monitored at 520 nm. The results showed that simultaneous determination of HZ, TSCZ and PHZ could be performed in their concentration ranges of 1.0–70.0, 0.2–6.0 and 0.1–10.0 μg mL?1, respectively. The root mean squares errors of prediction (RMSEP) of HZ, TSCZ and PHZ were 0.719, 0.164 and 0.105 (for PLS) 0.788, 0.166 and 0.993 (for PCR), respectively. Both methods (PCR and PLS) were validated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ, TSCZ and PHZ in water samples.  相似文献   

4.
偏最小二乘法及主组分回归法用于药物组分的测定   总被引:9,自引:1,他引:9  
刘家宝  任英 《分析化学》1990,18(10):887-892
本文研究了多元校准方法——偏最小二乘法(PLS)和主组份回归法(PCR)在药物多组份光度分析中的应用,获得了较满意的结果。而且在系列校准样品的实验设计、交叉证实法确定最佳因子数以及空缺组份体系的分析等方面进行了探讨。  相似文献   

5.
Simultaneous determination of hydrazine (HZ) and phenylhydrazine (PHZ) by H-point standard addition method (HPSAM) and partial least squares (PLS) regression was carried out based on kinetic data from novel potentiometry methods. The rate of chloride ion production in the reaction of HZ and PHZ with N-chlorosuccinimide (NCS) was monitored by a chloride ion-selective electrode. The experimental data show the good ability of ion-selective electrodes (ISEs) as detectors not only for the direct determination of chloride ion but also for simultaneous kinetic-potentiometric analysis using HPSAM and PLS methods. The methods are based on the differences observed in the production rate of chloride ions. The results show that simultaneous determination of HZ and PHZ can be performed in concentration ranges of 0.5 - 20.0 and 0.8 - 25.0 microg mL(-1), respectively. The total relative standard error for applying the PLS method to 8 synthetic samples in the concentration ranges of 1.0 - 16.0 microg mL(-1) for HZ and 2.0 - 16.0 microg mL(-1) for PHZ was 3.96. In order for the selectivity of the method to be assessed, we evaluated the effects of certain foreign ions upon the reaction rate and assessed the selectivity of the method. Both methods (PLS and HPSAM) were evaluated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ and PHZ in water samples.  相似文献   

6.
在pH1.81的Britton-Robinson(B-R)缓冲溶液中对诺氟沙星、氧氟沙星和洛美沙星三组分混合溶液进行光度测定,所得的重叠光谱数据用经典最小二乘(CLS),主成分回归(PCR),偏最小二乘(PLS)和径向基人工神经网络(RBF-ANN)方法处理和分析,结果表明RBF-ANN对合成样中三种药物浓度的预报结果...  相似文献   

7.
Differential Pulse Voltammetry has been used for the simultaneous determination of cysteine, tyrosine and trptophan on the unmodified glassy carbon electrode. In the analysis of these analytes in the same samples, the main difficulty is the high degree of overlapping of voltammograms. The relationships between the currents and the concentrations are complex and highly nonlinear. The predictive ability of principal component regression (PCR), partial least squares regression (PLS), genetic algorithm‐partial least squares regression (GA‐PLS) and principal component‐artificial neural networks (PC‐ANNs) were examined for simultaneous determination of three amino acids. For a regression model, everything that could not help in constructing the model may be considered as noise without further specification. PC‐ANN and GA‐PLS use significant data and show superiority over other applied multivariate methods. The proposed method was also applied satisfactorily to determination of analytes in some synthetic samples.  相似文献   

8.
A kinetic spectrophotometric method for the simultaneous determination of iodate and periodate in mixtures was proposed. The method is established on the different kinetic behaviours of the analytes which react with starch–iodide in the presence of sodium chloride in sulfuric acid medium. The kinetic data were collected from 260 to 900 nm every 10 nm, within a time range of 0–180 s at 1 s interval, and the absorbance collected at 291, 354 and 585 nm, respectively, increased linearly with the concentration between 0.1–1.2 mg L− 1 for both iodate and periodate. The mechanism investigation revealed that the iodate/periodate–iodide–starch system is a consecutive reaction. Subsequently, the mathematical model for the quantitative kinetic determination based on the consecutive reactions by utilizing chemometric methods was deduced, and the simultaneous determination of synthetic mixtures of iodate and periodate was then applied. Kinetic data collected at 291, 354 and 585 nm, were processed by chemometric methods, such as classical least square (CLS), principal component regression (PCR), partial least square (PLS), back-propagation artificial neural network (BP-ANN), radial basis function–artificial neural network (RBF-ANN) and principle component–radial basis function–artificial neural network (PC-RBF-ANN). The results showed that calibration model with the data collected at 354 nm had some advantages for the prediction of the analytes as compared with the ones of other two wavelengths, and the PLS and PC-RBF-ANN gave the lower prediction errors than other chemometric methods. The proposed method was applied to the simultaneous determination of iodate and periodate in several real samples; and the standard addition method yielded satisfactory recoveries in all instances.  相似文献   

9.
研究了主成分回归和偏最小二乘方法在多组分分光光度法分析中的应用,以5-Br-PADAP(2〔5-溴-2-吡啶)-偶氮〕5-二乙氨基苯酚)为显色剂,OP(聚乙二醇辛基苯基醚)作为增溶增稳剂,在pH=3.6的条件下,用主成分回归及偏最小二乘分光光度法同时测定了合成样中的铜、钴、镍、钒4组分含量,测定相对误差在-6.00%~4.00%之间。实验证明,对于加和性不好的体系偏最小二乘分光光度法要优于主成分回  相似文献   

10.
Two spectrophotometric methods for the determination of Ethinylestradiol (ETE) and Levonorgestrel (LEV) by using the multivariate calibration technique of partial least square (PLS) and principal component regression (PCR) are presented. In this study the PLS and PCR are successfully applied to quantify both hormones using the information contained in the absorption spectra of appropriate solutions. In order to do this, a calibration set of standard samples composed of different mixtures of both compounds has been designed. The results found by application of the PLS and PCR methods to the simultaneous determination of mixtures, containing 4–11 μg ml−1 of ETE and 2–23 μg ml−1 of LEV, are reported. Five different oral contraceptives were analyzed and the results were very similar to that obtained by a reference liquid Chromatographic method.  相似文献   

11.
Two spectrophotometric methods are described for the simultaneous determination of binary mixtures of Sn(II) and Sn(IV) in water samples and fruit juice samples, without prior separation steps, using the mean centering of ratio kinetic profiles and partial least squares (PLS) methods. The methods are based on the difference in the rate of the reactions of Sn(II) and Sn(IV) with pyrocatechol violet at pH 4.0. The methods allow rapid and accurate determination of Sn(II) and Sn(IV). The analytical characteristics of the methods for the simultaneous determination of binary mixtures of Sn(II) and Sn(IV) were calculated. The results showed that the methods were capable to simultaneous determination of 0.1–1.80 mg L−1 each of cations. The proposed methods were successfully applied to the simultaneous determination of Sn(II) and Sn(IV)in an orange juice sample.  相似文献   

12.
The quantitative predictive abilities of the new and simple bivariate spectrophotometric method are compared with the results obtained by the use of multivariate calibration methods [the classical least squares (CLS), principle component regression (PCR) and partial least squares (PLS)], using the information contained in the absorption spectra of the appropriate solutions. Mixtures of the two drugs Nifuroxazide (NIF) and Drotaverine hydrochloride (DRO) were resolved by application of the bivariate method. The different chemometric approaches were applied also with previous optimization of the calibration matrix, as they are useful in simultaneous inclusion of many spectral wavelengths. The results found by application of the bivariate, CLS, PCR and PLS methods for the simultaneous determinations of mixtures of both components containing 2-12microgml(-1) of NIF and 2-8microgml(-1) of DRO are reported. Both approaches were satisfactorily applied to the simultaneous determination of NIF and DRO in pure form and in pharmaceutical formulation. The results were in accordance with those given by the EVA Pharma reference spectrophotometric method.  相似文献   

13.
Two calibration models, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of quercetin and luteolin by high performance liquid chromatography (HPLC) with electrochemical detection (ECD). The proposed methods were successfully applied to the analysis of dried flower samples. It was found that the relative standard errors of prediction (RSEP) for the validation set of PLS of quercetin and luteolin was 1.31 and 2.23%, and the RSEP of PCR was found to be 3.56 and 4.32%, respectively. Several dried flower samples were analysed and the recoveries were in the range of 95.9–103.3%.  相似文献   

14.
偏最小二乘法—流动注射pH梯度技术用于同时测定铜和钴   总被引:1,自引:0,他引:1  
以PAR作显色剂,用流动注射pH梯度技术测定多个不同pH下的吸光度,以偏最小二乘法建立校正模型并预测,对Cu~(2+)、Co~(2+)二元素进行了同时测定,其计算结果优于主成分回归及多元线性回归法。  相似文献   

15.
Partial least squares (PLS) and principal component regression (PCR) have received considerable attention in the chemometrics for multicomponent analysis where superiority of one over another is a challenging problem yet. Considering the effect of wavelength selection, a comparison was made between PCR and PLS methods by application those to simultaneous spectrophotometric determination of diphenylamine (DPA), a compound from the third European Union list of priority pollutants, and its environmentally related products aniline and phenol. The UV absorbance spectra of the methanolic solutions of the analytes were measured in the concentration ranges of 1.0-10.0 microg mL(-1) and then subjected to PCR and PLS. The models refinement procedure and validation was performed by cross-validation. A modified changeable size moving windows strategy, where optimized the intervals between the sensors in a selected windows, was also proposed to select the more informative spectral regions for each of the analytes. It was found that wavelength selection improved the quality of predictions for both regression methods whereas more reliable results were obtained by removing of the highly collinear neighboring wavelengths. The resultant data explained that PLS produced more or less better results when whole spectral data were used but in the case of selected wavelength regions both methods produced similar results and no comments could be given about the superiority of one against another. The major difference was obtaining the higher number of factors for PCR, which is not a significant problem.  相似文献   

16.
Urea biosensors based on urease immobilized by crosslinking with BSA and glutharaldehyde coupled to ammonium ion-selective electrodes were included in arrays together with potassium, sodium and ammonium PVC membrane ion-selective electrodes. Multivariate calibration models based on PCR and PLS2 were built and tested for the simultaneous determination of urea and potassium. The results show that it is possible to obtain PCR and PLS2 calibration models for simultaneous determination of these two species, based on a very small set of calibration samples (nine samples). Coupling of biosensors with ion-selective electrodes in arrays of sensors raises a few problems related to the limited stability of response and unidirectional cross-talk of the biosensors, and this matter was also subjected to investigation in this work. Up to three identical urea biosensors were included in the arrays, and the data analysis procedure allowed the assessment of the relative performance of the sensors. The results show that at least two urea biosensors should be included in the array to improve urea determination. The prediction errors of the concentration of urea and potassium in the blood serum samples analyzed with this array and a PLS2 calibration model, based on nine calibration samples, were lower than 10 and 5%, respectively.  相似文献   

17.
《Analytical letters》2012,45(9):1879-1898
ABSTRACT

The multivariate calibration methods, partial least square regression type 1 (PLS 1) and principal component regression (PCR), were proposed for the simultaneous spectrophotometry determination of Amaranth (E-123), Ponceau 4R (E-124), Allura red (E-129) and Red 2G (E-128) in their mixtures. The parameters of the chemometric procedures were optimized and the proposed method was validated with synthetic samples and applied to analyze these dyes in spiked samples of beverages with satisfactory results.  相似文献   

18.
The multivariate calibration methods, partial least squares (PLS) and principle component regression (PCR) have been used to determine phenanthridine, phenanthridinone and phenanthridine N-oxide in spiked human plasma samples. Resolution of binary and ternary mixtures of analytes with minimum sample pre-treatment and without analyte separation has been successfully achieved analyzing the UV spectral data. The net analyte signal (NAS) concept was also used to calculate multivariate analytical figures of merit such as limit of detection, selectivity and sensitivity. The simultaneous determination of three analytes was possible by PLS and PCR processing of sample absorbance in the 210–355 nm region. Good recoveries were obtained for both synthetic mixtures and spiked human plasma samples.  相似文献   

19.
This work is concerned with the simultaneous determination of domperidone maleate (DOM) and cinnarizine (CINN) in a binary mixture form, without previous separation, by two different techniques. The first method is the application of derivative spectrophotometry where the linearity range and percentage recoveries for DOM and CINN were 2.5-30 micro g mL(-1), 5-25 micro g mL(-1) and 100.06+/-1.157, 99.93+/-1.377, respectively. The second method depends on the application of partial least squares (PLS) and principle component regression (PCR) models. A training set consisting of 10 mixtures containing 5-20 micro g mL(-1) for each component was used for the construction of the PCR and PLS models. These models were used after their validation for the prediction of the concentration of DOM and CINN in their mixtures. The proposed procedures were successfully applied for the simultaneous determination of both drugs in laboratory prepared mixtures and in commercial tablet preparations. The validity of the proposed methods was assessed by applying the standard addition technique where the percentage recovery of the added standard was found to be 99.98+/-0.297 and 99.84+/-0.700 for DOM and CINN, respectively, using the derivative spectrophotometric method and 100.29+/-0.398 and 100.11+/-0.363 for DOM and CINN, respectively, using the PLS and PCR methods.The proposed procedures are rapid, simple, require no preliminary separation steps and can be used for routine analysis of both drugs in quality control laboratories.  相似文献   

20.
Multivariate calibration models (PCR and PLS) were developed for simultaneous determination of Fe(III) and Cu(II) with 1‐(2‐pyridylazo)‐2‐naphthol and AOT as chromogenic reagent and micellizing agent, respectively. In the presence of AOT the spectrum of Fe(III)‐PAN complex was shifted to higher wavelength and the overlapping with Cu‐PAN spectrum decreased. It seems that this anionic surfactant enters the structure of the Fe‐PAN complex to cause a shift in the absorption spectrum of it. The parameters controlling behavior of the systems were investigated and optimum conditions were selected. Sixteen ternary mixtures were selected as the calibration set. To select the number of factors in PCR and PLS algorithms, a cross validation method, leaving out one sample at a time, was employed. The calibration models were validated with 8 synthetic mixtures containing the metal ions in different proportions that were randomly designed. The best calibration model was obtained by using PLS regression. The method was successfully applied to simultaneous determination of copper and iron in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号