首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed-ligand chelate extraction of trivalent lanthanides such as La, Eu and Lu and a trivalent actinide, Am into xylene with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPMBP) and dihexyl-N,N-diethylcarbamoylmethylphosphonate (CMP) has been studied by tracertechniques. These trivalent metal ions are found to be extracted from 0.01 mol/dm3 chloroacetate buffer solutions as M(PMBP)3·HPMBP type self adducts with HPMBP alone and in the presence of CMP as M(PMBP)3·CMP (where M=La, Eu, Lu and Am) into the organic phase. The equilibrium constants of the above species are deduced by non-linear regression analysis. The synergistic constants of trivalent lanthanides do not increase monotonically with atomic number but have a maximum at Eu and that of Am was found to lie between that of La and Eu.  相似文献   

2.
The extraction of Zn(II) and Cd(II) from thiocyanate solutions with bis-2-ethylhexyl sulphoxide (B2EHSO) in benzene as an extractant has been studied by tracer techniques. For comparison, extraction has also been carried out with tributylphosphate (TBP). The extraction data have been analysed by both graphical and theoretical methods by taking into account complexation of the metal in the aqueous phase by inorganic ligands and plausible complexes extracted into the organic phase. The results demonstrate that Zn(II) is extracted as Zn(SCN)2·2B2EHSO and Zn(SCN)2·2TBP. In the case of Cd(II), the extracted species are Cd(SCN)2·4B2EHSO/4TBP. The synergistic extraction of Zn(II) and Cd(II) with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPMBP) and B2EHSO or TBP or trioctylphosphine oxide (TOPO) from acetate buffer solutions has also been investigated. Zn(II) is extracted as Zn(PMBP)2·B2EHSO/TBP/TOPO. On the other hand, Cd(II) is found to be not extracted with these mixed-ligand systems under the experimental conditions. These results also demonstrate the mutual separation of Zn(II) and Cd(II) using the synergistic extraction with HPMBP in the presence of various neutral oxodonors.  相似文献   

3.
A simple, sensitive and selective method for solvent extraction and spectrophotometric determination of lanthanum(III), praseodymium(III), neodymium(III) and samarium(III) is described. The rare earth metals are extractable into chloroform solution of N-phenylbenzohydroxamic acid (PBHA) at pH9–10. Various parameters are studied to optimize the extraction conditions. Stoichiometry of the complexes and the effect of various ions is discussed. The molar absorptivity is found to increase from 65,000 to 93,000 1·mol–1· cm–1 with the increase in atomic number of the rare earths. The stability constants of the complexes, separation factors and pH5 0 are discussed.  相似文献   

4.
The extraction behavior of thorium(IV) by di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) from nitric acid media has been investigated. The influence factors including the concentration of HNO3, salting-out reagents, temperature, the concentration of metal ions and DEHEHP have been examined systematically. A possible extraction mechanism is proposed and the extracted species as Th(NO3)4·2B (o) is confirmed by the slope analysis method. The extraction equilibrium constants (K ex) and thermodynamic parameters (ΔG, ΔH and ΔS) were calculated under the present experimental conditions. DEHEHP shows a high selectivity of thorium(IV) over rare earths(III). Stripping study indicates that thorium can be completely stripped by distilled water from the Th-loaded DEHEHP. Furthermore, a solvent extraction process including six extraction stages, six scrubbing stages, and six stripping stages was designed for the preparation of highly pure thorium from thorium concentrate with DEHEHP as extractant in laboratory scale, and finally thorium product can be obtained with a purity of 99.999 % and a yield of 98 %.  相似文献   

5.
《中国化学快报》2022,33(7):3422-3428
Separation and recovery of U(VI) and Th(IV) from rare earth minerals is a very challenging work in rare earth industrial production. In the present study, a homemade membrane emulsification circulation (MEC) extractor was used to separate U(VI) and Th(IV) from rare earth elements by using Cyphos IL 104 as an extractant. Batch experiments were carried out using a constant temperature oscillator to investigate the extraction parameters of the single element and the results indicated that Cyphos IL 104 could reach the extraction equilibrium within 30 min for all the three elements, i.e., U(VI), Th(IV), and Eu(III). Besides, the MEC extractor possessed a strong phase separation ability. The extraction efficiencies of U(VI), Th(IV), La(III), Eu(III) and Yb (III) increased with the increase of pH. La(III), Eu(III) and Yb(III) were hardly extracted when pH ≤ 1.50, which was beneficial for effectively separating U(VI) and Th(IV) from La(III), Eu(III) and Yb(III). In the multi-stages stripping experiments, when the stripping stage number was 3, the effective separation could be achieved by using HCl and H2SO4, since the stripping efficiency reached 80.0% and 100.0% for Th(IV) and U(VI), respectively. Slope method and FT-IR spectra showed that Cyphos IL 104 reacted with U(VI) and Th(IV) by chelation mechanism. The extraction of multi-elements indicated that U(VI) and Th(IV) could be well separated from the solution which contains all rare earth elements, and the extraction efficiencies of U(VI) and Th(IV) both were close to 100.0%. Based on the above experimental results, a flowchart for efficient separation of U(VI) and Th(IV) from rare earth elements was proposed.  相似文献   

6.
The synergistic extraction of alkaline earth cations from 1M NaNO3 aqueous solutions with 3-phenyl-4-benzoylisoxazol-5-one (HPBI) and tri-n-octylphosphine oxide (TOPO) in toluene at 25°C has been studied. The extraction efficiency follows the order Ba2+<Sr2+<Ca2+<Mg2+, which is the same as that previously observed with 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one (HPMBP). The extraction occurs at a lower pH range than with HPMBP because of the higher acidity of HPBI. The extracted species are M(PBI)2(TOPO) x withx=2 for M=Mg, Ca, Sr and Ba (logK 1,2,2=3.91, 1.18 and 0.29 respectively) and withx=3 for M=Sr and Ba (logK 1,2,3=3.28 and 2.07 respectively). The strong interactions which occur between HPBI and TOPO (logK int=1.84) have been considered in the extraction constant calculations..  相似文献   

7.
Liquid — liquid extraction of Ag(I) by diphenyl-2-pyridylmethane (DPPM) in benzene from aqueous nitric and sulfuric acid solutions containing thiocyanate ions has been studied at ambient temperature (24±2 °C). The metal is extracted quantitatively from 0.01M HNO3+0.02M KSCN; or 0.25M H2SO4+0.02M KSCN by 0.1M DPPM (optimum extraction conditions). Slope analysis indicates that two types of ion-pair complexes i.e. [(DPPMH)+·Ag(SCN) 2 ] and [(DPPMH) 2 + ·Ag(SCN) 3 2– ] are involved in the extraction process. Separation factors determined at optimum conditions reveal the separation of Ag(I) from Cs(I), Br(I), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Fe(III), Au(III) (from HNO3 solution only), Cr(III), Hf(IV), Ta(V), Sn(IV) and Cr(VI). With the exception of thiosulfate, other complexing anions like ascorbate, acetate, citrate, oxalate do not hinder the extraction of Ag(I) under optimum conditions.  相似文献   

8.
The potassium lanthanide double sulphates KLn(SO4)2·H2O (Ln=La, Nd, Sm, Eu, Gd, Dy) were obtained by evaporation of aqueous reaction mixtures of rare earth (III) sulphates and potassium thiocyanate at 298 K. X-ray single-crystal investigations show that KLn(SO4)2·H2O (Ln=Nd, Sm, Eu, Gd, Dy) crystallise monoclinically (Ln=Sm: P21/c, Z=4, a=10.047(1), b=8.4555(1), c=10.349(1) Å, wR2=0.060, R1=0.024, 945 reflections, 125 parameters) while KLa(SO4)2·H2O adopts space group P3221 (Z=3, a=7.1490(5), c=13.2439(12) Å, wR2=0.038, R1=0.017, 695 reflections, 65 parameters). The coordination environment of the lanthanide ions in KLn(SO4)2·H2O is different in the case of the Nd/Sm/Gd and the Eu/Dy compounds, respectively. In the first case the Ln atoms are nine-fold coordinated in contrast to the latter where the Ln ions are eight-fold coordinated by oxygen atoms. The vibrational spectra of KLn(SO4)2·H2O and the UV-vis reflection spectra of KEu(SO4)2·H2O and KNd(SO4)2·H2O are also reported.  相似文献   

9.
Extraction processes of indium(III) with 2-octylaminopyridine (2-OAP) from media of various complexing ability, succinate and salicylate, in chloroform have been elucidated. The ion-pair complex has also quantitative extraction in xylene and 1,2-dichloroethane. Indium(III) from organic phase was stripped with 1.0 M hydrochloric acid and determined complexometrically with EDTA. The stoichiometry of the extracted species was found out on the basis of slope analysis. The extraction of indium(III) proceeds by an anion exchange mechanism and the extracted species is [RR′NH2 +In(succinate)2 -](org). Temperature dependence of the extraction equilibrium constant was also examined to estimate the apparent thermodynamic functions (ΔH, ΔG and ΔS) for extraction reaction. It is possible to separate indium(III) from Zn(II), Cd(II), Pb(II), Hg(II), Bi(III), Tl(I), Tl(III), Ga(III), Al(III), Te(IV), Se(IV), Sb(III), Fe(III) and Sn(IV). The method is simple, rapid and reproducible and can be used to determine the indium from samples like alloys.  相似文献   

10.
Two new macrocyclic hexanuclear metal(III) 18-metallacrowns-6, [Mn6(acshz)6(H2O)6] · 18H2O (1) and [Fe6(acshz)6(CH3OH)6] · 6CH3OH · 6H2O (2), have been synthesized and characterized, where acshz3− is N-acetyl-5-chlorosalicylhydrazidate. These crystal structures contain neutral 18-membered metallacrown rings consisting of six metal(III) ions and six acshz3− ligands. The ring is formed by the succession of six structural moieties of the type [M(III)–N–N] through hydrazide N–N groups bridging the ring metal ions. The ligand enforces the metal ions to form the stereochemistry of a propeller configuration with alternate Λ/Δ or Δ/Λ forms. The largest diameters of the hexanuclear rings are about 6.97 Å at the entrance and 9.53 Å at the centre of the cavity for 1; and 7.94 and 10.24 Å for 2, respectively. The solution integrity and stability of the metallacrowns were confirmed using electrospray ionization ESI-MS and UV–Vis spectroscopy in methanol. Antibacterial screening data indicate the formation of the metallacrown 1 reduces the antimicrobial activity of the ligand H3acshz hugely, while metallacrown 2 has strong antimicrobial activity against Bacillus subtilis (B. subtilis).  相似文献   

11.
Bench-Scale studies on the partitioning and recovery of minoractinides from the actual and synthetic sulphate-bearing high level waste (SBHLW) solutions have been carried out by giving two contacts with 30% TBP to deplete uranium content followed by four contacts with 0.2M CMPO+1.2M TBP in dodecane. The acidity of the SBHLW solutions was about 0.3M. In the case of actual SBHLW, the final raffinate contained about 0.4% -activity originally present in the HLW, whereas with synthetic SBHLW the -activity was reduced to the background level.144Ce is extracted almost quantitative in the CMPO phase,106Ru about 12% and137Cs is practically not extracted at all. The extraction chromatographic column studies with synthetic SBHLW (aftertwo TBP contacts) has shown that large volume of waste solutions could be passed through the column without break-through of actinide metal ions. Using 0.04M HNO3>99% Am(III) and rare earths could be eluted/stripped. Similarly >99% Pu(IV) and U(VI) could be eluted.stripped using 0.01M oxalic acid and 0.25M sodium carbonate, respectively. In the presence of 0.16M SO 4 2– (in the SBHLW) the complex ions AmSO 4 + , UO2SO4, PuSO 4 2+ and Pu(SO4)2 were formed in the aqueous phase but the species extracted into the organic phase (CMPO+TBP) were only the nitrato complexes Am(NO3)3·3CMPO, UO2(NO3)2·2CMPO and Pu(NO3)4·2CMPO. A scheme for the recovery of minor actinides from SBHLW solution with two contacts of 30% TBP followed by either solvent extraction or extraction chromatographic techniques has been proposed.  相似文献   

12.
Selective separation of Co(II) from aqueous acidic solutions containing thiocyanate ions has been achieved by using 2-benzylpyridine (BPy) dissolved in benzene. Optimum conditions of extraction by 0.1M BPy are: 0.05M (HCl, HNO3) or 0.01M H2SO4+1 M KSCN. Ascorbate and sulfate ions do not affect the extraction of cobalt(II), whereas acetate, citrate and oxalate ions lower the extraction. Separation of cobalt(II) from Mn, Cr, Hf, Fe, Y, Ce, Cd, Sr, Cs and several rare earth elements can be achieved in a single extraction. Slope analysis by log-log plot reveals that neutral cobalt-thiocyanate species is extracted with the probable formula of the extracted complex as Co(BPY)3 (SCN)2.  相似文献   

13.
The extraction of In(III) from HCl, H2SO4, and HNO3 media using a 0.20 mol l−1 Cyanex 923 solution in toluene is investigated. In(III) is quantitatively extracted over a fairly wide range of HCl molarity while from H2SO4 and HNO3 media the extraction is quantitative at low acid concentration. The extracted metal ion has been recovered by stripping with 1.0 mol l−1 H2SO4. The stoichiometry of the In(III): Cyanex 923 complex is observed to be 1:2. The extraction of In(III) is insignificantly changed in diluents namely toluene, n-hexane, kerosene (160-200 °C), cyclohexane, and xylene having more or less the same dielectric constants, whereas, it decreases with increasing polarity of diluents such as cyclohexanone and chloroform. The extractant is stable towards prolonged acid contact and there is a negligible loss in its extraction efficiency even after recycling for 20 times. The extraction behavior of some commonly associated metal ions namely V(IV), Ti(IV), Al(III), Cr(III), Fe(III), Ga(III), Sb(III), Tl(III), Mn(II), Fe(II), Cu(II), Zn(II), Cd(II), Pb(II), and Tl(I) has also been investigated. Based on the partition data the conditions have been identified for attaining some binary separations of In(III). These conditions are extended for the recovery of pure indium from zinc blend, zinc plating mud, and galena. The recovery of the metal ions is around 95% with purity approximately 99%.  相似文献   

14.
The characterisation of rare earth elements carbonates (REECs) was performed by thermal analysis (TG-DTG) combined with simultaneous infrared evolved gas analysis-Fourier transform infrared (EGA-FTIR) spectroscopy. The TG-DTG curves were obtained using the Perkin-Elmer PC series TGA-7 thermogravimetric analyser in the temperature range 25-800 °C both in dynamic air and nitrogen atmosphere.La2(CO3)3·nH2O, Eu2(CO3)3·nH2O and Sm2(CO3)3·nH2O were analysed, the dehydration and decarbonation steps were investigated and the water content was calculated. The trace rare earth elements in lanthanum, europium and samarium carbonates were determined by Philips PU 7000 inductively coupled plasma atomic emission spectrometry (ICP-AES) and the concentration of REE ranged from 6.2×10−5 to 4.2×10−4% (w/w).  相似文献   

15.
Extraction of trivalent (Pu3+, Am3+, actinides and Eu3+, a representative of lanthanides) and tetravalent (Np4+ and Pu4+) actinides has been studied with dihexyl N,N-di-ethylcarbamoylmethyl phosphonate (DHDECMP) in combination with TBP in benzene from 2M nitric acid. The stoichiometries of the species extracted were found to be M(NO3)3·(3–n) TBP·n DHDECMP (for trivalent ions) and M(NO3)4·(2–n) TBP·n DHDECMP (for tetravalent ions) by the slope ratio method. The extraction constants evaluated (from the distribution data) indicate that for tetravalent ions (with solvation number two) the extraction constant increases when TBP (Kh=0.17) molecules are successively replaced by more basic DHDECMP (Kh=0.34) molecules. However, for trivalent ions (with solvation number three) when TBP molecules are totally replaced by DHDECMP molecules stereochemical factors appear and instead of increase, a substantial decrease in extraction constants is observed for Eu3+ and Am3+, a lesser decrease being observed for Pu3+ (larger ion).  相似文献   

16.
The synergism of the crown ethers (CE) dicyclohexano-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6) and 18-crown-6 (18C6) has been investigated in the thenoyl trifluoroacetone (HTTA) extraction of americium(III) in benzene medium from an aqueous phase of ionic strength 0.5 and pH 3.50 at room temperature (23°C). The extracted synergistic species have the general formula Am(TTA)3 · CE except for DC18C6 in which case the species Am(TTA)3·2CE was also observed at high CE concentrations. The order of synergism was found to be DC18C6>DB18C6>18C6, which is the order of the basicity of CE as indicated by their ability to extract hydrogen ions from nitric acid solutions.  相似文献   

17.
Double rare earth(III) monomethylammonium sulfates with general empirical formula CH3NH3Ln(SO4)2·3H2O (Ln = La-Er and Y) were synthesized and examined by X-ray powder diffraction, TG, DTG and DTA in the temperature range from 25° to 700°C, and chemical analysis. It was found that these compounds are isomorphous and decompose to rare earth sulfate at 700°C.The authors are grateful to the Research Council of Slovenia for financial support of this research.  相似文献   

18.
Extraction of Mo(VI) by 4-(5-nonyl)pyridine (NPy) in benzene from mineral acid solutions containing thiocyanate ions has been investigated at room temperature (23±2°C). From mineral acid (HCl, HNO3, and H2SO4) solutions alone Mo(VI) is not extracted quantitatively while the presence of small amounts of KSCN in the system augments the extraction by a large factor. Stoichiometric studies indicate that ion-pair type complexes (NPyH)2·[MoO2(SCN)4] are responsible for the extraction. Separation factors determined at fixed extraction conditions (0.1M Npy/C6H6–0.1M acid +0.2M KSCN) reveal that Ag(I), Cu(II), Co(II), Zn(II), Hg(II) and U(VI) are co-extracted while a clean separation from alkali metals, alkaline earths and some transition metals like Ln(III), Zr(IV), Hf(IV), Cr(III), Cr(VI) and Ir(III) is possible. Some of the complexing anions like oxalate, citrate, acetate, thiosulfate or ascorbate do not affect the degree of extraction of Mo(VI) allowing it to be recovered from diverse matrices.  相似文献   

19.
The synthesis of double oxalates of rare earths(III) and potassium with empirical formulae K4Ln2(C2O4)5·10H2O (Ln=La, Ce) and KLn(C2O4)2· nH2O (wheren=4 for Pr-Dy andn=4.5 for Ho-Lu, Y) is described. The compounds obtained were studied by TG, DTG and DTA over the temperature interval 25–500C and by X-ray powder diffraction and chemical analysis. Three structurally different groups were recognized. It was found that either rare earth oxide or basic carbonate (Ln2O2·CO3) and potassium carbonate were obtained as final product at 500C, depending on the rare earth element. The thermal decomposition takes place in two well-resolved stages.  相似文献   

20.
A selective method has been developed for the extraction chromatographic trace level separation of Cu(II) with Versatic 10 (liquid cation exchanger) coated on silanised silica gel (SSG-V10). Cu(II) has been extracted from 0.1 M acetate buffer at the range of pH 4.0–5.5. The effects of foreign ions, pH, flow-rate, stripping agents on extraction and elution have been investigated. Exchange capacity of the prepared exchanger at different temperatures with respect to Cu(II) has been determined. The extraction equilibrium constant (Kex) and different standard thermodynamic parameters have also been calculated by temperature variation method. Positive value of ΔH (7.98 kJ mol−1) and ΔS (0.1916 kJ mol−1) and negative value of ΔG (−49.16 kJ mol−1) indicated that the process was endothermic, entropy gaining and spontaneous. Preconcentration factor was optimized at 74.7 ± 0.2 and the desorption constants Kdesorption1(1.4 × 10−2) and Kdesorption2(9.8 × 10−2) were determined. The effect of pH on Rf values in ion exchange paper chromatography has been investigated. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. Cu(II) has been separated from synthetic binary and multi-component mixtures containing various metal ions associated with it in ores and alloy samples. The method effectively permits sequential separation of Cu(II) from synthetic quaternary mixture containing its congeners Bi(III), Sn(II), Hg(II) and Cu(II), Cd(II), Pb(II) of same analytical group. The method was found effective for the selective detection, removal and recovery of Cu(II) from industrial waste and standard alloy samples following its preconcentration on the column. A plausible mechanism for the extraction of Cu(II) has been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号