首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a highly selective and sensitive monohydrogen phosphate membrane sensor based on a molybdenum bis(2-hydroxyanil) acetylacetonate complex (MAA) is reported. The sensor shows a linear dynamic range between 1.0 × 10−1 and 1.0 × 10−7 M, with a nice Nernstian behavior (−29.5 ± 0.3 mV decade−1) in pH of 8.2. The detection limit of the electrode is 6.0 × 10−8 M (∼6 ppb). The best performance was obtained with a membrane composition of 32% poly(vinyl chloride), 58% benzyl acetate, 2% hexadecyltrimethylammonium bromide and 8% MAA. The sensor possesses the advantages of short response time, low detection limit and especially, very good selectivity towards a large number of organic and inorganic anions including salicylate, citrate, tartarate, acetate, oxalate, fluoride, chloride, bromide, iodide, sulfite, sulfate, nitrate, nitrite, cyanide, thiocyanate, perchlorate, metavanadate, and bicarbonate ions. The electrode can be used for at least 10 weeks without any considerable divergence in its slope and detection limit. It was used as an indicator electrode in potentiometric titration of monohydrogenphosphate ion with barium chloride. The proposed sensor was successfully applied to direct determination of monohydrogenphosphate in two fertilizer samples (NPK).  相似文献   

2.
Wang K  Xu JJ  Tang KS  Chen HY 《Talanta》2005,67(4):798-805
A novel solid-contact potentiometric sensor for ascorbic acid based on cobalt phthalocyanine nanoparticles (NanoCoPc) as ionophore was fabricated without any need of auxiliary materials (such as membrane matrix, plasticizer, and other additives). The electrode was prepared by simple drop-coating NanoCoPc colloid on the surface of a glassy carbon electrode. A smooth, bright and blue thin film was strongly attached on the surface of the glassy carbon electrode. The electrode showed high selectivity for ascorbic acid, as compared with many common anions. The influences of the amount of NanoCoPc at the electrode surface and pH on the response characteristics of the electrode were investigated. To overcome the instability of the formal potential of the coated wire electrode, a novel electrochemical pretreatment method was proposed for the potentiometric sensor based on redox mechanism. This resulting sensor demonstrates potentiometric response over a wide linear range of ascorbic acid concentration (5.5 × 10−7 to 5.5 × 10−2 M) with a fast response (<15 s), lower detection limit (ca. 1.0 × 10−7 M), and a long-term stability. Furthermore, microsensors based on different conductors (carbon fiber and Cu wire) were also successfully fabricated for the determination of practical samples.  相似文献   

3.
The feasibility of a newly synthesized Rh(III) complex, Rh[(trpy)(bpy)Cl](PF6)2, as a novel ionophore for the preparation of anion-selective polymeric membrane electrodes was tested. The ionophore exhibited anti-Hofmeister behavior with enhanced potentiometric selectivity toward thiocyanate ion compared to other anions. The influence of some experimental parameters such as membrane composition, nature and amount of plasticizer and additive and concentration of internal solution on the potential response of the SCN sensor were investigated. The electrode exhibits a Nernstian response for SCN over a wide concentration range (1.0 × 10−5 to 1.0 × 10−1 M) with a slope −58.7 ± 0.5 mV per decade and a detection limit of 4.0 × 10−6 M (0.23 ppm). It could be used in a pH range of 3.0-8.0 and has a fast response time of about 15 s. The proposed sensor was used for the determination of thiocyanate ions in real samples such as urine and saliva of smokers and nonsmokers and, as an indicator electrode, in potentiometric titrations of SCN ion.  相似文献   

4.
This paper describes a potentiometric method for determination of l-histidine (l-his) in aqueous media, using a carbon paste electrode modified with tetra-3,4-pyridinoporphirazinatocopper(II) (Cu (3,4tppa)). The electrode exhibits linear response to the logarithm of the concentration of l-histidine from 2.4 × 10−5 to 1.0 × 10−2 M, with a response slope of −49.5 ± 1 mV and response time of about 1.5 min. The detection limit according to IUPAC recommendation was 2.0 × 10−5 M. The proposed electrode shows a good selectivity for l-his over a wide variety of anions. This chemically modified carbon paste electrode was successfully used for the determination of l-his in a synthetic serum and RANDOX control serum solutions.  相似文献   

5.
《Electroanalysis》2003,15(2):139-144
A highly selective and sensitive membrane electrode based on vanadyl salen complex (VS), which responds to monohydrogenphosphate (MHP) ions is described. The response of the sensor is Nernstian over the wide concentration range (1.0×10?1 ? 5.0×10?6 M) of MHP. The sensitivity of the electrode is high enough to permit the detection of as little as 0.6 μg/mL of MHP without any significant interference from high levels of other anions. The potentiometric selectivity coefficient data revealed negligible interference from 11 common anions. The electrode has a fast response time (<25 s), good slope stability at pH 8.2 for a period of at least eight weeks. It was successfully applied for the direct determination of monohydrogenphosphate in fertilizer and, as indicator electrode, in potentiometric titration of HPO42? ion with barium chloride.  相似文献   

6.
A new carbon paste electrode modified with tetramethyl thiuram disulfide is prepared to use as copper potentiometric sensor in batch and flow analysis. The influence of pH and carbon paste composition on the potentiometric response is studied. The principal parameters of the flow system are optimized and the detection limits and the selectivity coefficients of the potentiometric sensor are calculated for static and flow mode. In both cases, the sensor shows high selectivity to copper ions but in flow analysis this selectivity is higher. The obtained detection limits are 4.6 × 10−8 M for batch measurements and 2.0 × 10−7 M for on-line analysis. The potentiometric sensor is applied to copper(II) determination in real samples in static and flow measurements. In both analysis modes, successful results are obtained.  相似文献   

7.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on butane -2,3-dione bis(salicylhydrazonato) zinc(II) [Zn (BDSH)] complex as carrier for thiocyanate-selective electrode is reported. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. The sensor responds to thiocyanate in linear range from 1.0 × 10−6 to 1.0 × 10−1 M with a slope −56.5 ± 1.1 mV decade−1, over a wide pH range of 3.5-8.5. The limit of detection of the electrode was 7.0 × 10−7 M SCN. Selectivity coefficients determined with fixed interference method (FIM) indicate a good discriminating ability towards SCN ion in comparison to other anions. The proposed sensor has a fast response time of about 5-15 s and can be used for at least 3 months without any considerable divergence in potential. It was applied as indicator electrode in titration of thiocyanate with Ag+ and in potentiometric determination of thiocyanate in saliva and urine samples.  相似文献   

8.
A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 × 10−7 to 1.0 × 10−2 M) with a limit of detection as low as 8.91 × 10−8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures.  相似文献   

9.
A novel selective membrane electrode for determination of ultra-trace amount of lead was prepared. The PVC membrane containing N,N′-dimethylcyanodiaza-18-cown-6 (DMCDA18C6) directly coated on a graphite electrode, exhibits a Nernstian response for Pb2+ ions over a very wide concentration range (from 1.0×10−2 to 1.0×10−7 M) with a limit of detection of 7.0×10−8 M (∼14.5 ppb). It has a fast response time of ∼10 s and can be used for at least 2 months without any major deviation in potential. The electrode revealed very good selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as an indicator electrode in potentiometric titration of lead ions and in determination of lead in edible oil, human hair and water samples. The proposed sensor was found to be superior to the best Pb2+-selective electrodes reported in terms of detection limit and selectivity coefficient.  相似文献   

10.
A highly selective membrane electrode based on nickel(II)-1,4,8,11,15,18,22,25-octabutoxyphthalocyanine (NOBP) is presented. The proposed electrode shows very good selectivity for thiocyanate ions over a wide variety of common inorganic and organic anions. The sensor displays a near Nernstian slope of −58.7 ± 0.6 mV per decade. The working concentration range of the electrode is 1.0 × 10−6 to −1.0 × 10−1 M with a detection limit of 5.7 × 10−7 M (33.06 ng/mL). The response time of the sensor in whole concentration ranges is very short (<10 s). The response of the sensor is independent on the pH range of 4.3-9.8. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutyl phthalate, 3% NOBP and 2% hexadecyltrimethylammonium bromide. It was successfully applied to direct determination of thiocyanate in biological samples, and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution.  相似文献   

11.
Potentiometric sensor based on glassy carbon electrode covered with polyaniline and neutral carrier, e.g. thiacalix[4]arene containing pyridine fragments in the substituents in the lower rim has been developed and applied for determination of Ag+ ions in the range from 1.0 × 10−2 to 5.0 × 10−7 M with the response time of 12 s. The presence of thiacalixarene in the surface layer improves the reversibility and selectivity of the signal towards transient metal ions. The potentiometric selectivity coefficients were determined for various measurement conditions. As shown, the pH control and the use of NaF as a masking agent fully eliminate the interfering effect of Hg2+ and Fe3+ ions, respectively. The reaction of Ag+ with thiacalixarene was proved by the investigation of the extraction of picrate complexes of transient metals in the organic phase. The potentiometric sensor developed was successfully used for the potentiometric determination of silver sulfathiazole (Argosulfan™).  相似文献   

12.
Ion-selective electrode (ISE) was designed by dispersing the dysprosium(III) IIP particles in 2-nitrophenyloctyl ether plasticizer and then embedded in polyvinyl chloride matrix. The ISE shows a Nernstian response for dysprosium(III) over a wide concentration range (8.0 × 10−6 to 1.0 × 10−1 M) with a slope of 21.7 mV per decade. The limit of detection was 2 × 10−6 M. This sensor has a very fast response time (∼10 s) and offers high selectivity compared to conventional chemical sensors towards dysprosium(III) with respect to several alkali, alkaline earth and transition metal ions as the selectivity is 10-100-fold better. The sensor was used for determination of dysprosium(III) ions by potentiometric (EDTA) titration and has been successfully demonstrated for the determination of fluoride in mouth wash solution.  相似文献   

13.
In this work, a novel La(III) membrane sensor based on 8-amino-N-(2-hydroxybenzylidene)naphthylamine (AIP) is presented. This electrode reveals good selectivity for La3+ over a wide variety of lanthanides metal ions. Theoretical calculations and conductance study of AIP to lanthanum and some other metal ions were carried out and confirmed selectivity toward La(III) ions. The electrode comprises 7% AIP, 30% PVC, 61% NPOE and 2% KTpClPB. The sensor displays a linear dynamic range between 1.0 × 10−7 and 1.0 × 10−1 M, with a nice Nernstian slope of 20.3 ± 0.3 mV per decade and a detection limit of 8.0 × 10−8 M. The potentiometric response is independent of pH in the range of 4.0-9.0. The proposed sensor posses the advantage of short response time, and especially, very good selectivity towards a large number of cations, such as Sm(III), Ce(III, Pr(III), Yb(III) and Hg(II), low detection limit and wide linear dynamic range in comparison with former ones. The electrode can be used for at least seven weeks without any considerable divergence in the potentials. It was used as an indicator electrode in the potentiometric titration of La(III) ions with EDTA. The sensor was applied to the determination of La(III) ions concentration in binary mixtures. It was also applied for the determination of fluoride ions in mouth wash preparations.  相似文献   

14.
The potentiometric behavior of coated wire electrodes based on dodecylbenzenesulfonate-doped polypyrrole (PPy-DBS) and hyamine as ion exchanger was investigated. The PPy-DBS was prepared electrochemically by anodic polymerization of pyrrole in the presence of DBS ions in aqueous solution and used as ionophore for construction of the sensor. Two types of coated wire electrodes made of PVC-PPy-DBS and PVC-Hyamine-DBS, plasticized with ortho-nitrophenyloctylether (o-NPOE) showed the Nernstian behavior (with respective calibration slopes of about 58 and 60 mV per decade) over the DBS concentration range of 3.0×10−6 to 1.1×10−3 M and 5.0×10−6 to 1.3×10−3 M, respectively. The influence of membrane composition, type of plasticizer, and pH of test solution on the potentiometric responses of the two electrodes was investigated. The potentiometric response was independent of the pH of test solution in the range 3-10. The response time of electrodes was fast (10 s for both types of electrode), and they can be used for at least 3 months without any significant change in potential. The proposed electrodes revealed very good selectivity for DBS ion over diverse inorganic and organic anions. The potentiometric selectivity coefficients for the PPy-DBS based electrode revealed a significant improvement as compared to the electrode made by conventional Hyamine-DBS (Hya-DBS) anion exchanger. The proposed electrode was used for determination of DBS ion in some commercial detergents. The results of the potentiometric determinations were in satisfactory agreement with those obtained by a standard method (two-phase titration).  相似文献   

15.
The construction and the analytical evaluation of a potentiometric sensor, namely, Pt∣Hg∣Hg2(Sac)2∣Graphite, where Sac stands for saccharinate ion, are described. This electrode has a wide linear dynamic range between 5.0 × 10− 7 and 1.0 × 10− 2 mol L− 1 with a near-Nernstian slope of − 58.1 ± 1.1 mV decade− 1 and a detection limit of 3.9 × 10− 7 mol L− 1. The potentiometric response is independent of the pH of the solution in the pH range 3.0-9.0. The electrode is easily constructed at a relatively low-cost with fast response time (within 10-30 s) and can be used for a period of 10 months without significant change in its performance characteristics. The proposed sensor displayed good selectivities over a variety of other anions (carboxylates and inorganic anions). The potentiometric sensor was successfully applied to the determination of saccharin in real food samples, that is, in instant tea powders, diet soft drinks and strawberry dietetic jam.  相似文献   

16.
A PVC membrane electrode for copper ion based on 1,3-dithiane,2-(4-methoxy phenyl) as ionophore and o-nitrophenyl octyl ether as a plasticizer is demonstrated. The electrode exhibits a Nernstian slope of 29.5±1 mV per decade in a linear range of 3.0×10−6 to 5.0×10−2 M for Cu2+ ion. The detection limit of this electrode is 1.0×10−6 mol/l. This sensor has a very short response time of about 5 s and could be used in a pH range of 4.0-7.0. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully applied as an indicator electrode for the potentiometric titration of copper ion with EDTA and for the direct determination of copper in river water.  相似文献   

17.
A new PVC membrane electrode for Co2+ based on N,N′-bis(salicylidene)-3,4-diaminotoluene, an excellent neutral carrier, has been fabricated using sodium tetraphenylborate (NaTPB) as an anionic excluder and dioctylphthalte (DOP) as a solvent mediator. The electrode exhibits a linear potential response in the concentration range of 7.9 × 10−8 to 1.0 × 10−1 M with a slope of 30 ± 0.2 mV per decade. The detection limit of the proposed sensor is 5.0 × 10−8 M and it can be used over a period of 5 months. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metals and could be used in the pH range of 2.0-9.0. This electrode was successfully applied for the determination of Co2+in real samples and as an indicator electrode in potentiometric titration of cobalt ions.  相似文献   

18.
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. In this work, a biomimetic potentiometric sensor, based on a non-covalent imprinted polymer, was fabricated for the recognition and determination of hydroxyzine in tablets and biological fluids. The molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization, using hydroxyzine dihydrochloride as a template molecule, methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensor showed a high selectivity and a sensitive response to the template in aqueous system. The MIP-modified electrode exhibited a Nernstian response (29.4 ± 1.0 mV decade−1) in a wide concentration range of 1.0 × 10−6 to 1.0 × 10−1 M with a lower detection limit of 7.0 × 10−7 M. The electrode demonstrated a response time of ∼15 s, a high performance and a satisfactory long-term stability (more than 5 months). The method has the requisite accuracy, sensitivity and precision to assay hydroxyzine in tablets and biological fluids.  相似文献   

19.
In this study, a new poly(vinyl chloride) (PVC) membrane sensor for La3+ ion based on 2,2′-dithiodipyridine as an ion carrier was prepared. This electrode revealed good selectivity for La3+ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, the amount of additive and concentration of internal solution on the potential response of La3+ sensor were investigated. The electrode exhibited a Nernstian slope of 20.0 ± 1.0 mV per decade of La3+ over a concentration range of 7.1 × 10−6 to 2.2 × 10−2 M of La3+ in the pH range 3.3-8.0. The response time was about 7 s and the detection limit was 3.1 × 10−6 M. The electrode can be used for at least 2 months without a considerable divergence in potential. The proposed electrode was used as an indicator electrode in potentiometric titration of oxalate and fluoride ions and was applied for determination of F ion in mouthwash solution.  相似文献   

20.
Comparative studies of the potentiometric behavior of three mercapto compounds [2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol] (MTMP), [5-(2-methoxy benzylidene amino)-1,3,4-thiadiazole-2-thiol] (MBYT) and [5-(pyridin-2-ylmethyleneamino)-1,3,4-thiadiazole-2-thiol] (PYTT) self-assembled on gold nanoparticles (GNPs) as ionophores in carbon paste electrodes (CPEs) have been made. These mercapto thiadiazole compounds were self-assembled onto gold nanoparticles and then incorporated within carbon paste electrode. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+), in which the sulfur and nitrogen atoms in their structure play a role as the effective coordination donor site for the copper ion. These carbon paste electrodes were applied as indicator electrodes for potentiometric determination of copper ions. The sensor based on PYTT exhibits the working concentration range of 4.0 × 10−9 to 7.0 × 10−2 M and a Nernstian slope of 28.7 ± 0.3 mV decade−1 of copper activity. The detection limit of electrode was 1.0 × 10−9 M and potential response was pH independent across the range of 3.0-6.5. It exhibited a quick response time of <5 s and could be used for a period of 45 days. The ion selectivity of this electrode for Cu2+ was over 104 times that for other metal cations. The application of prepared sensors has been demonstrated for the determination of copper ions in spiked water and natural water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号