首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Kadara RO  Tothill IE 《Talanta》2005,66(5):1089-1093
As copper(II) is a common ion in a variety of analytical samples, its effect on the stripping response of lead(II) at bismuth film screen-printed carbon electrode (BFSPCE) was investigated. The study was conducted using a screen-printed three-electrode system (working, counter and reference electrodes), with the carbon-working electrode plated in situ with bismuth film. Copper present at significant concentration level in samples was found to affect the sensitivity of the electrode by reducing the constant current stripping chronopotentiometric (CCSCP) response of lead(II). Recovery of the lead stripping response at the BFSPCE in the presence of copper was obtained when 0.1 mM ferricyanide was added to the test solution. The ferricyanide added circumvents the detrimental effect of copper(II) by selectively masking the copper ions by forming a complex. The analytical utility of the procedure is illustrated by the stripping chronopotentiometric determinations of lead(II) in soil extracts.  相似文献   

2.
The key to remediative processes is the ability to measure toxic contaminants on-site using simple and cheap sensing devices, which are field-portable and can facilitate more rapid decision-making. A three-electrode configuration system has been fabricated using low-cost screen-printing (thick-film) technology and this coupled with a portable electrochemical instrument has provided a a relatively inexpensive on-site detector for trace levels of toxic metals. The carbon surface of the screen-printed working electrode is used as a substrate for in situ deposition of a metallic film of bismuth, which allows the electrochemical preconcentration of metal ions. Lead and cadmium were simultaneously detected using stripping chronopotentiometry at the bismuth film electrode. Detection limits of 8 and 10 ppb were obtained for cadmium(II) and lead(II), respectively, for a deposition time of 120 s. The developed method was applied to the determination of lead and cadmium in soils extracts and wastewaters obtained from polluted sites. For comparison purposes, a mercury film electrode and ICP-MS were also used for validation.  相似文献   

3.
A comparison of the determination of copper by constant current stripping potentiometry (CCSP) at mercury and gold films has been carried out. The preferred solution conditions for the mercury film study were determined to be 0.1M ammonium acetate at pH 4.5 and 0.1M HCl for the gold film study. The influence of chloride on the stripping signal was investigated and it was found that for the mercury film conditions, well-formed stripping signals could be obtained up to a chloride concentration of 0.5 M which permitted the ready determination of copper in seawater. With the gold film, high chloride concentrations affected both the film stability and the glassy carbon surface and repeatable results were difficult to obtain. The optimized CCSP methods were applied to various aqueous samples including tap water, seawater, TCLP (acetic acid) extracts as well as TCLP extracts using groundwater and ocean water. Based on the results obtained for these various matrices, it was concluded that there are several advantages favoring the mercury film. The interference from organic components in the sample matrix on the general applicability of CCSP for the determination of copper at either a mercury or gold film is discussed.  相似文献   

4.
A novel catalytic adsorptive stripping chronopotentiometric (CC‐CAdSCP) procedure for the determination of Co(II) traces was developed using a lead film electrode (PbFE). The PbFE was generated in situ on a glassy carbon support from a 0.1 M ammonia buffer containing 1×10?5 M Pb(II), 6.5×10?5 M DMG and the target metals. An addition of 0.2 M NaBrO3 to the solution yielded an 11‐fold catalytic enhancement of chronopotentiometric response of the Co(II)‐DMG complex. The CC‐CAdSCP curves were well‐developed, sharp and reproducible (RSD 5.0 % for 5×10?9 M Co(II)). The limit of detection for Co(II) for 210 s of accumulation time was 4×10?10 M (0.024 µg L?1). In addition, the elaborated method allowed the simultaneous quantification of Co(II) and Ni(II) simultaneously.  相似文献   

5.
In the present work the anodic stripping voltammetric (ASV) methodology using a thin mercury film electrode in situ plated in thiocyanate media was re-assessed in order to allow the simultaneous determination of copper and lead in seawater. Under previously suggested conditions [6], i.e. using a concentration of thiocyanate of 5 mM, the ASV peaks of copper and lead overlapped due to the formation of a stable copper(I)-thiocyanate species, limiting the analytical determinations. Therefore, the best value for the thiocyanate concentration was re-evaluated: for 0.05 mM a trade-off between good resolution of the copper and lead peaks and high reproducibility of the mercury film formation/removing processes was achieved. In this media, the ASV peaks for Pb and Cu occurred, separated by 140 mV. Also, the in situ thin mercury film electrode was produced and removed with good repeatability, which was confirmed by the relative standard deviation values for the ASV determinations: 0.5% for Pb and 2.0% for Cu (10 replicate determinations in a solution with metal concentrations 1.5×10−8 M for lead and 2.2×10−8 M for copper). The optimised methodology was successfully applied to the determination of copper in the presence of lead, in certified seawater (NASS-5).  相似文献   

6.
We have examined the anodic stripping voltammetry (ASV) of Cd and Pb at carbon screen printed electrodes modified by an in situ deposited Bi film, and have demonstrated significant cross talk between the stripping peaks of the two metals. A simple and generally applicable method for dealing with this problem is described, based on curve-fitting three-dimensional calibration plots using MATLAB. Non-linear fitting to the calibrations produced coefficients of determination R2 > 0.99 for both metals. We have illustrated use of the plots in conjunction with Bi-plated electrodes by measuring 15 randomly selected mixtures of Cd and Pb of known concentration.  相似文献   

7.
《Electroanalysis》2006,18(10):955-964
The effects of the proximity of the signals of two heavy metal ions in stripping voltammetry (SV) and constant‐current stripping chronopotentiometry (SCP) is studied at mercury drop (HMDE) and mercury film (MFE) electrodes. For this purpose, the Cd(II)‐Pb(II)‐phthalate system is used, taking advantage of the approaching of the signals corresponding to Cd(II)‐phthalate and Pb(II)‐phthalate labile complexes as phthalate is added to mixtures of Cd(II) and Pb(II)‐ions. The results are compared with those obtained by differential pulse polarography (DPP) and by stripping measurements on the Pb(II)‐phthalate system alone, showing discrepancies in SCP data under nondepletive conditions and negligible differences in the other cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号