首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and fast analytical procedure has been developed for the determination of As, Sb, Se, Te and Bi in milk samples by hydride generation atomic fluorescence spectrometry (HG-AFS). Samples were treated with aqua regia for 10 min in an ultrasound water bath and pre-reduced with KBr for total Se and Te determination or with KI and ascorbic acid for total As and Sb, the determination of Bi being possible in all with or without pre-reduction. Slurries of samples, in the presence of antifoam A, were treated with NaBH4 in HCl medium to obtain the corresponding hydrides, and AFS measurements were processed in front of external calibrations prepared and measured in the same way as samples. Results obtained by the developed procedure compare well with those found after microwave-assisted complete digestion of samples. The proposed method is simple and fast, and only 1 ml of milk is needed. The values obtained for detection limit are 2.5, 1.6, 3, 6 and 7 ng l−1 for As, Sb, Se, Te and Bi respectively in the diluted samples, with average relative standard deviation values of 3.8, 3.1, 1.9, 6.4 and 1.2% for three independent analysis of a series of commercially available samples of different origin. Data found in Spanish market samples varied from 3.2±0.3 to 11.3±0.2 ng g−1 As, from 3.1±0.2 to 11.6±0.4 ng g−1 Sb, from 10.7±0.5 to 25.5±0.4 ng g−1 Se, from 0.9±0.2 to 9.4±0.6 ng g−1 Te and from 11.5±0.1 to 27.7±0.4 ng g−1 Bi.  相似文献   

2.
Non-chromatographic speciation of toxic arsenic in fish   总被引:1,自引:0,他引:1  
A rapid, sensitive and economic method has been developed for the direct determination of toxic species of arsenic present in fish and mussel samples. As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were determined by hydride generation-atomic fluorescence spectrometry using a series of proportional equations without the need of a chromatographic previous separation. The method is based on the extraction of arsenic species from fish through sonication with HNO3 3 mol l−1 and 0.1% (m/v) Triton and washing of the solid phase with 0.1% (m/v) EDTA, followed by direct measurement of the corresponding hydrides in four different experimental conditions. The limit of detection of the method was 0.62 ng g−1 for As(III), 2.1 ng g−1 for As(V), 1.8 ng g−1 for MMA and 5.4 ng g−1 for DMA, in all cases expressed in terms of sample dry weight. The mean relative standard deviation values (R.S.D.) in actual sample analysis were: 6.8% for As(III), 10.3% for As(V), 8.5% for MMA and 7.4% for DMA at concentration levels from 0.08 mg kg−1 As(III) to 1.3 mg kg−1 DMA. Recovery studies provided percentages greater than 93% for all species in spiked samples. The analysis of SRM DORM-2 and CRM 627 certified materials evidenced that the method is suitable for the accurate determination of arsenic species in fish.  相似文献   

3.
Vanessa G.K. Almeida 《Talanta》2007,71(3):1047-1053
This paper reports the development of a reversed flow injection system for the spectrophotometric determination of Sb(III) and total Sb in antileishmanial drugs. The analytical system is based on the selective reaction between Sb(III) and bromopyrogallol red (BPR) with the decrease of the absorbance at 555 nm. Total Sb concentration was determined after reduction of all Sb(V) to Sb(III) with KI and ascorbic acid. The influence of system variables (chemical and flow type) and the possible interference of high amounts of Sb(V) on Sb(III) was studied as well as the suitable conditions for preparation of samples. It was verified that the use of Triton X-100 enhanced the sensitivity of the methodology and that the previous sonication of the samples was fundamental to achieve accurate results. Under optimized conditions the reversed FIA system was able to process 63 samples per hour with a detection limit of 29 ng ml−1 and a R.S.D. of 3.8% (0.25 μg ml−1 level). Real samples of commercial antileishmanial drugs were analyzed, being observed no statistical difference between the results obtained by the developed system and FAAS or manual methodology in relation to total Sb concentration.  相似文献   

4.
A simple method is described for the rapid and reliable determination of ultratrace concentrations of Sb(III) and Sb(V) in seawater by differential pulse anodic stripping voltammetry. It is based on the well-known dependence of Sb(III)/Sb(V) voltammetric response on acidity conditions. Under our optimised conditions (0.5 mol l−1 HCl for Sb(III) and 5 mol l−1 HCl for total Sb, respectively): (i) a detection limit of 11 ng l−1 is obtained for a 10 min deposition time; (ii) no prior elimination of organic matter is needed; and (iii) antimony can be determined in the presence of natural copper levels. Particular care has been taken in order to understand the chemical processes taking place in all the solutions and reactions involved in the sampling and measuring procedures. Our results revealed the need to consider (i) the effect of photooxydation of synthetic and seawater samples on Sb speciation; and (ii) the stability of Sb(III) both in seawater samples and in the analytical solutions.  相似文献   

5.
The capabilities and limitations of the continuous flow injection hydride generation technique, coupled to atomic absorption spectrometry, for the speciation of major antimony species in seawater, were investigated. Two pre-concentration techniques were examined. After continuous flow injection hydride generation and collection onto a graphite tube coated with iridium, antimony was determined by graphite furnace atomic absorption spectrometry. The low detection limits obtained (∼5 ng l−1 for Sb(III) and ∼10 ng l−1 for Sb(V) for 2.5 ml seawater samples) permitted the determination of Sb(III) and total antimony in seawater with the use of selective hydride generation and on-line UV photooxidation. The number of samples that can be analyzed is about 15 per hour for Sb(III) determinations and 10 per hour for total antimony determinations. The analysis of seawater samples showed that Sb(V) was the predominant species, even in the presence of important biological activity.  相似文献   

6.
Fan Z 《Analytica chimica acta》2007,585(2):300-304
A simple and sensitive method for using electrothermal atomic absorption spectrometry (ET AAS) with Rh as permanent modifier determination of Sb(III) and total Sb after separation and preconcentration by N-benzoyl-N-phenylhydroxylamine (BPHA)-chloroform single drop has been developed. Parameters, such as pyrolysis and atomization temperature, solvent type, pH, BPHA concentration, extraction time, drop size, stirring rate and sample volume were investigated. Under the optimized experimental conditions, the detection limits (3σ) were 8.0 ng L−1 for Sb(III) and 9.2 ng L−1 for total Sb, respectively. The relative standard deviations (R.S.Ds.) were 6.6% for Sb(III) and 7.1% for total Sb (c = 0.2 ng mL−1, n = 7), respectively. The enrichment factor was 96. The developed method has been applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

7.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

8.
Study on simultaneous speciation of arsenic and antimony by HPLC-ICP-MS   总被引:1,自引:0,他引:1  
A method was developed for the simultaneous speciation of arsenic and antimony with HPLC-ICP-MS using C30 reversed phase column. Eight kinds of arsenic compounds (As(III), As(V), monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenobetaine (AB), arsenocholine (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium (TeMA)), Sb(III) and Sb(V) were simultaneously separated by the special mobile phase containing ammonium tartrate. Especially for the species of organic As, a C30 column was better than a C18 column in the effect of separation. Limits of detection (LOD) for these elements were 0.2 ng ml−1 for the species of each As, and 0.5 ng ml−1 for the species of each Sb, when a 10 μl of sample was injected, respectively. The proposed method was applied to a hot spring water and a fish sample.  相似文献   

9.
Liquid-liquid extraction preconcentration technique which allows the achievement of extremely high ratio between the aqueous and organic phase was specified as semi-microextraction. A modified highly effective liquid phase semi-microextraction (LSME) procedure was developed for preconcentration and determination of ultra trace levels of inorganic antimony species in environmental waters using electrothermal atomic absorption spectrometry (ETAAS) for quantification. Antimony(III) species were selectively extracted as dithiocarbamate complexes from 100 mL aqueous phase into 250 μL xylene at pH range of 5-8. Total Sb was determined using the same extraction system over a sample acidity range of pH 0-1.2 without the need for pre-reduction of Sb(V) to Sb(III). The concentration of Sb(V) was obtained as the difference between that of total antimony and Sb(III). With an 8 min extraction an enrichment factor of 400 was achieved. The limit of detection (3 s) was 2 ng L−1 Sb. The method was not affected by the presence of up to 0.01% humic acid, 0.025 mol L−1 EDTA, 0.01 mol L−1 tartaric acid and 0.001 mol L−1 F. Recoveries of spiked Sb(III) and Sb(V) in river, tap, and sea water samples ranged from 93 to 108%. The results for total antimony concentration in the river water reference material SLRS-5 were in good agreement with the information value. The procedure was applied to the determination and quantification of dissolved antimony species in natural waters.  相似文献   

10.
A new method was developed for the simultaneous speciation of inorganic arsenic and antimony in water by on-line solid-phase extraction coupled with hydride generation-double channel atomic fluorescence spectrometry (HG-DC-AFS). The speciation scheme involved the on-line formation and retention of the ammonium pyrrolidine dithiocarbamate complexes of As(III) and Sb(III) on a single-walled carbon nanotubes packed micro-column, followed by on-line elution and simultaneous detection of As(III) and Sb(III) by HG-DC-AFS; the total As and total Sb were determined by the same protocol after As(V) and Sb(V) were reduced by thiourea, with As(V) and Sb(V) concentrations obtained by subtraction. Various experimental parameters affecting the on-line solid-phase extraction and determination of the analytes species have been investigated in detail. With 180 s preconcentration time, the enrichment factors were found to be 25.4 for As(III) and 24.6 for Sb(III), with the limits of detection (LODs) of 3.8 ng L− 1 for As(III) and 2.1 ng L− 1 for Sb(III). The precisions (RSD) for five replicate measurements of 0.5 μg L−1 of As(III) and 0.2 μg L−1 of Sb(III) were 4.2 and 4.8%, respectively. The developed method was validated by the analysis of standard reference materials (NIST SRM 1640a), and was applied to the speciation of inorganic As and Sb in natural water samples.  相似文献   

11.
A fast extraction procedure has been developed for Sb(III) and Sb(V) oxoanions speciation in airborne particulate matter samples. Different extraction media (diammonium tartrate, hidroxilammonium clorhidrate, citric acid + ascorbic acid, phosphoric acid and citrate solutions) were tried, with assistance of an ultrasonic probe. The operation power and time of extraction were also optimized. The higher extraction recoveries were obtained with a 100 mmol L−1 hidroxilammonium clorhidrate aqueous solution assisted by the ultrasound probe operated at 50 W during 3 min. The extracts were analyzed by HPLC-HG-AFS. The chromatographic separation of Sb(III) and Sb(V) was also optimized using diammonium tartrate and phthalic acid as mobile phases. The separation of both Sb species was performed in less than 3 min under isocratic conditions, using a 200 mmol L−1 diammonium tartrate solution. The proposed extraction procedure and the HPLC-HG-AFS instrumental coupling have been successfully applied to airborne particulate matter samples, with high Sb content, collected in heavy traffic streets from Buenos Aires (Argentina). The results showed the presence of both Sb species at similar concentrations in the ng m−3 level. The extraction yield was higher than 90% for all the analyzed samples.  相似文献   

12.
Rui Liu  Maoyang Xi  Yi Lv 《Talanta》2009,78(3):885-635
Arsine trapping on resistively heated tungsten coil was investigated and an analytical method for ultratrace arsenic determination in environmental samples was established. Several chemical modifiers, including Re, Pt, Mo, Ta and Rh, were explored as permanent chemical modifiers for tungsten coil on-line trapping and Rh gave the best performance. Arsine was on-line trapped on Rh-coated tungsten coil at 640 °C, then released at 1930 °C and subsequently delivered to an atomic fluorescence spectrometer (AFS) by a mixture of Ar and H2 for measurement. In the medium of 2% (v/v) HCl and 3% (m/v) KBH4, arsine can be selectively generated from As(III). Total inorganic arsenic was determined after pre-reduction of As(V) to As(III) in 0.5% (m/v) thiourea-0.5% (m/v) ascorbic acid solution. The concentration of As(V) was calculated by difference between the total inorganic arsenic and As(III), and inorganic arsenic speciation was thus achieved. With 8 min on-line trapping, the limit of detection was 10 ng L−1 for As(III) and 9 ng L−1 for total As; and the precision was found to be <5% R.S.D. (n = 7) for 0.2 ng mL−1 As. The proposed method was successfully applied in total arsenic determination of several standard reference materials and inorganic arsenic speciation analysis of nature water samples.  相似文献   

13.
A graphite furnace atomic absorption method of platinum and palladium determination after their separation from environmental samples has been presented. The samples were digested by aqua regia and the analyte elements were separated on the dithizone sorbent. The procedure of sorbent preparation was described and their properties were established. Two various procedures of elution by thiourea and concentrated nitric acid were described and discussed. The low limit of detection was established as 1 ng g−1 for platinum and 0.2 ng g−1 for palladium.There was also investigated the behaviour of platinum and palladium introduced into the soil in various chemical forms.  相似文献   

14.
Antimony(V) is volatilized by reaction with potassium bromide in concentrated sulfuric acid media. After volatilization, the gases can be transported to an inductively coupled plasma spectrometer for atomic emission of antimony and its analytical determination. The influent factors, concentrated sulfuric acid volume, concentration and volume of the potassium bromide aqueous solution and carrier gas flow were investigated and optimized using different alternatives. A detection limit of 48 ng ml−1 of Sb was achieved under the optimized conditions with a precision of 7.6% and the calibration graph was linear from 0.10 to 10.0 μg ml−1 for a sample injection of 130 μl.The study of interferences from common cations and anions revealed a good tolerance for most ions, although there was a significant improvement in Sb(V) volatility when As(III) was present. Furthermore, the As(III) sensitization was only produced with Sb(V) species, while the volatility of the Sb(III) bromide species was unaltered.The method was applied to the determination of Sb in real river waters. The results were checked using alternative atomic spectroscopy methods.  相似文献   

15.
A novel disk electrochemical hydride generator has been developed for the determination of As and Sb. Compared with the traditional thin-layer cell, the disk cell combined the advantages of quick assembly and easy operation. This electrochemical system for hydride generation in neutral buffer solutions has been studied for analytical usefulness in coupling with atomic fluorescence spectrometry. It was found that the use of neutral phosphate buffer solution could markedly increase the fluorescence intensity of As(III) and Sb(III) and reduce the impact of cathode erosion on the stability of signal intensity. At the same time, the fluorescence intensity of As(V) and Sb(V) were almost suppressed totally. The detection limits (3σ) of 0.031 μg L−1 As(III) and 0.026 μg L−1 Sb(III) in aqueous solutions were obtained, respectively. The precisions (n = 11) for 20 μg L−1 As(III) and Sb(III) were 2.0% and 2.7%, respectively. The method was successfully applied for determination of different oxidation states of As and Sb in environmental samples.  相似文献   

16.
A highly sensitive mechanized method has been developed for the determination of mercury in milk by atomic fluorescence spectrometry (AFS). Samples were sonicated for 10 min in an ultrasound water bath in the presence of 8% (v/v) aqua regia, 2% (v/v) antifoam A and 1% (m/v) hydroxilamine hydrochloride, and after that, they were treated with 8 mmol l−1 KBr and 1.6 mmol l−1 KBrO3 in an hydrochloric medium. Atomic fluorescence measurements were made by multicommutation, which provides a fast alternative in quality control analysis, due to the easy treatment of a large number of samples (approximately 70 h−1), and is an environmentally friendly procedure, which involves a waste generation of only 94.5 ml h−1 as compared with the 605 ml h−1 obtained by using continuous AFS measurements. The limit of detection found was 0.011 ng g−1 Hg in the original sample. The method provided a relative standard deviation of 3.4% for five independent analysis of a sample containing 0.30 ng g−1 Hg. To validate the accuracy of the method, a certified reference material NIST-1459 (non-fat milk powder) containing 0.3±0.2 ng g−1 Hg was analysed and a value of 0.27±0.06 ng g−1 Hg was found. A comparison made between data found by the developed procedure and those obtained by microwave-assisted digestion and continuous AFS measurements evidenced a good comparability between these two strategies. Results obtained for commercially available milk samples varied between 0.09 and 0.61 ng g−1 Hg depending on the type of sample and its origin. The confluence of the analytical waste with a 6 mol l−1 NaOH allowed us to reduce the waste generation in a working session from 1 l to 5 g solid residue with a matrix of Fe(OH)3 which contributes to the deactivation of traces of heavy metals presents in the samples that does not form volatile hydrides.  相似文献   

17.
In this paper, carbon nanofibers (CNFs) as a novel solid phase extraction sorbent were developed for speciation preconcentration and separation of inorganic arsenic species As(III) and As(V) prior to determination by inductively coupled plasma mass spectrometry (ICP-MS). It was found that during all the steps of the separation, As(III) was selectively sorbed on the microcolumn packed with CNFs within a pH range of 1.0-3.0 in the presence of ammonium pyrroinedithiocarbamate (APDC), while As(V) was passed through the microcolumn without the retention. Various experimental parameters affecting the separation and determination of As(III) and As(V) have been investigated in detail. Under the optimized conditions, the detection limits of this method for As(III) were 0.0045 ng mL−1 with an enrichment factor of 33 and 0.24 ng mL−1 for As(V), and the relative standard deviations for As(III) and As(V) were 2.6% and 1.9% (n = 9, c = 1.0 ng mL−1), respectively. In order to verify the accuracy of the method, a certified reference of water sample was analyzed, and the results obtained were in good agreement with the certified values. The proposed method was applied for the analysis of inorganic arsenic species in groundwater and lake water with the recovery of 92-106%.  相似文献   

18.
A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L− 1 H2SO4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g− 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g− 1) for Sb(V) and 5.1% (4.6 ng g− 1) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g− 1 and Sb(V) from 14.7 to 21.2 ng g− 1. The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.  相似文献   

19.
This paper describes a new procedure for the determination of Sb (III) and Sb (V) by differential pulse adsorptive stripping voltammetry (DPAdSV) using pyrogallol as a complexing agent. The selection of the experimental conditions was made using experimental design methodology. The detection limits obtained were 1.03 × 10−10 and 9.48 × 10−9 mol dm−3 for Sb (III) and Sb (V), respectively.In order to carry out the simultaneously determination of both antimony species a partial least squares regression (PLS) is employed to resolve the voltammetric signals from mixtures of Sb (III) and Sb (V) in the presence of pyrogallol. The relative error in absolute value is less than 0.5% when concentrations of several mixtures are calculated. Moreover, the solution is analyzed for any possible effects of foreign ions. The procedure is successfully applied to the speciation of antimony in pharmaceutical preparations and water samples.  相似文献   

20.
In the present paper, we develop a methodology for antimony speciation in occupationally exposed human urine samples by high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). The methodology was applied to the determination of Sb(V), Sb(III) and (CH3)3SbCl2 (TMSb(V)). Retention time of Sb(V), Sb(III) and TMSb(V) species were 0.88, 2.00 and 3.61 and the detection limits were 0.18, 0.19 and 0.12 μg L− 1, for 100 μL loop injection respectively which is considered useful for elevated/occupationally exposed urine samples. Studies on the stability of antimony species in urine samples on the function of the elapsed time of preservation (4 °C) and storage (− 70 °C) were performed. Results revealed that antimony species are highly unstable at − 70 °C, probably due to co-precipitation reaction. In this kind of matrix transformation during preservation time may occur, such as oxidation of Sb(III) to Sb(V) and transformation into species that do not elute from the column. EDTA shows that it is able to stabilize Sb(III) for more than one week of preservation time at 4 °C avoiding co-precipitation during storage at − 70 °C. Finally the methodology was applied to occupationally exposed human urine samples. 25% of specimens present antimony levels (Sb(V)) of more than 5 μg L− 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号