首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photosensitization using Rose Bengal (RB) modifies membrane ionic currents and kills cultured mouse pituitary, GH3, cells. Here we investigate the dose-response relationship for ionic current modification and for cell killing to assess a possible causal link. When exposed to 0.5 μM RB and 6.5 mW/cm2 of visible light, calcium current was blocked in 1.9 ± 0.2 min (meanSEM; 0.74 ± 0.08 J/ cm2; n = 18), a transient component of potassium current, tentatively identified as a delayed-rectifier potassium current, disappeared in 52 ± 8 s (0.34 ± 0.05 J/cm2; n = 10) and a steady-state component of potassium current, largely a calcium-activated potassium current, disappeared in 3.5 ± 0.4 min (1.37 ± 0.16 J/cm2; n = 11). Conversely, the background leak current increased in magnitude. At 5 min of illumination, the longest time studied here, it continued to increase nearly linearly, making it the only current component studied that is still changing after 5 min of light. Under the conditions used, cell killing increased to 100% in the exposure range of4–10 min of illumination (1.6 J/cm2 to 3.9 J/cm2) when assessed using fluorescent markers, ethidium homodimer and calcein and required slightly longer exposure times when assessed using trypan blue. Thus, it is difficult to ascribe a causal role in cell killing by photosensitization to alterations of standard ion channels and known ionic currents. However, the increase in leak current has the correct dose-response characteristics to be involved.  相似文献   

2.
Abstract— The influence of type of photosensitizer, drug and light dose, and time interval between photosensitizer and illumination on the extent of photodynamic therapy (PDT)-induced bladder damage and recovery was investigated using a mouse model. The three photosensitizers studied were Photofrin, meso-tetrahydroxyphenylchlorin (m-THPC) and bacteriochlorin a (BCA). Functional bladder damage was quantitatively assessed from increases in urination frequency index (FI) at 1-35 weeks after illumination and histological damage was qualitatively assessed at 1 day, 1, 2 and 12 weeks. Photofrin-mediated PDT caused an acute increase in FI at 1 week, with recovery within 2-8 weeks after light doses of 2.7-8.2 J/cm2. After higher light doses there was only partial recovery. Previous results indicated that the acute response and rate of recovery was the same whether Photofrin was given at 1 day or up to 7 days before illumination. The m-THPC-mediated PDT at drug doses of 0.3 mg/kg also resulted in a marked acute response with good recovery, even after 10.8 J/cm2. Lower drug doses in combination with 5.4 J/cm2 did not result in acute or late damage. There was no significant difference in acute response when m-THPC was given 1, 3 or 7 days before illumination, although recovery was faster for the longer illumination intervals (3 or 7 days). Illumination at 1 h after 20 mg/kg BCA induced an acute response within 2 days after illumination, with recovery within 4-8 weeks. Lower drug doses did not result in damage. The most prominent histological changes during the acute period with all three photosensitizers were submucosal edema and vessel dilation, with epithelial denudation (depending on drug/light dose). We conclude that BCA and m-THPC are both potent new photosensitizers. They can induce a moderate to severe acute bladder response with complete healing over a period of a few weeks. The photosensitizer m-THPC is very effective with low doses of photosensitizer and light, whereas relatively high doses of BCA and light are required to obtain equivalent functional bladder damage in our mouse model.  相似文献   

3.
Hypericin is a naturally occurring photosensitizer, whose presence in plants has been responsible for cutaneous phototoxicity in grazing animals. The photosensitizing properties of this agent have recently been exploited in models for anti-tumor and anti-viral activity. The cytotoxicity of hypericin and light was assessed in 3T3 mouse fibroblasts using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide)] assay and the lactate dehydrogenase (LDH) leakage assay. Membrane damage was assessed in swine erythrocytes using hemolysis, potassium (K+) leakage and formation of lipid hydroperoxides. Concentration- and light-dependent decreases in fibroblast viability were seen starting at hypericin concentrations of 1.25 μM and light power flux levels of 24 J/cm2 using a visible light source and at 0.417 μM hypericin and a similar light dose using a solar simulator, No LDH leakage was observed at hypericin concentrations up to 30 μM and visible light up to 144 J/cm2. Light-and/or concentration-dependent increases in hemolysis, K+ leakage and formation of lipid hydroperoxides in red blood cell (RBC) membranes were observed, but at concentrations and light doses much greater than those required to induce cytotoxicity in fibroblasts. Lipid peroxidation and hemolysis occurred at 15 μM hypericin and 24 J/cm2 (visible light source). Potassium ion leakage occurred at concentrations and light levels as low as 5 μM and 12 J/cm2 or 15 μM and 4.8 J/cm2 (visible light source) but was still a less sensitive indicator than fibroblast cytotoxicity. Evidence for both type I and type II reactions was shown in RBC membranes by TLC analysis of cholesterol products. In the absence of light, hypericin appears to be relatively nontoxic in the models tested.  相似文献   

4.
The purpose of the study was to determine the distribution of the photosensitizer toluidine blue O (TBO) within Porphyromonas gingivalis and the possible mechanism(s) involved in the lethal photosensitization of this organism. The distribution of TBO was determined by incubating P. gingivalis with tritiated TBO (3H-TBO) and fractionating the cells into outer membrane (OM), plasma membrane (PM), cytoplasmic proteins, other cytoplasmic constituents and DNA. The percentage of TBO in each of the fractions was found to be, 86.7, 5.4, 1.9, 5.7 and 0.3%, respectively. The involvement of cytotoxic species in the lethal photosensitization induced by light from a helium-neon (HeNe) laser and TBO was investigated by using deuterium oxide (D2O), which prolongs the lifetime of singlet oxygen, and the free radical and singlet oxygen scavenger L-tryptophan. There were 9.0 log10 and 2 log10 reductions in the presence of D2O and H2O (saline solutions), respectively, at a light dose of 0.44 J (energy density = 0.22 J/cm2), suggesting the involvement of singlet oxygen. Decreased kills were attained in the presence of increasing concentrations of L-tryptophan. The effect of lethal photosensitization on whole cell proteins was determined by measuring tryptophan fluorescence, which decreased by 30% using 4.3 J (energy density = 4.3 J/ cm2) of light. Effects on the OM and PM proteins were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. There was evidence of change in the molecular masses of several PM proteins and OM proteins compared to controls. There was evidence of damage to the DNA obtained from irradiated cells. Scanning electron microscopic studies showed that there was coaggre-gation of P. gingivalis cells when sensitized and then exposed to laser light. These results suggest that lethal photosensitization of P. gingivalis may involve changes in OM and/or PM proteins and DNA damage mediated by singlet oxygen.  相似文献   

5.
We report a new aspect of rapid (<30 s) light-induced cell membrane damage photosensitized by 5,5"-bis(aminomethyl)-2,2':5',2"-terthiophene dihydrochloride (BAT), which is a water-soluble alpha-terthienyl analogue, using a high-power laser (light intensity 1.6 W cm(-2)). In this paper, we will discuss the relationship between the exposure time of the cells to the photosensitizer and the phototoxic process. Three toxic processes can be identified: first, a non-light-mediated toxicity dependent on BAT-cell incubation; second, a phototoxicity independent of BAT exposure time when the BAT concentration is in the 2-10-microM range; third, a phototoxicity dependent on BAT exposure time when BAT concentration becomes 20 microM. The cytotoxicity decreases when alpha-tocopherol, an antioxidant, is added to a cell membrane. This pattern of phototoxicity is the typical of a phospholipid peroxidation chain reaction and oxidative damage of membrane proteins triggered by a reactive oxygen species generated by a triplet state of BAT. The BAT exposure time is clearly correlated with the partition of the photosensitizer in the cell membrane and inside the cell.  相似文献   

6.
The continuous photoreduction of methyl viologen by 5,5″-bis(aminomethyl)-2,2′:5′,2″-terthiophene (AT) and 2,2′:5′,2″-terthiophene-5,5″-dicarboxylic acid (CT), using EDTA as a sacrificial electron donor, has been investigated in aqueous solution at various pH. Apparent rates and efficiencies of production of the methyl viologen radical cation (MV+) were found to be dependent on the pH, the concentrations of all three components and the intensity of the incident light. The highest conversion efficiency (77%) was shown by the bis(aminoniethyI (-substituted terthiophene AT at pH 7.7. The quantum yield for the formation of MV+ under these conditions was 0.24, which is comparable with other common systems  相似文献   

7.
Phototherapy of newborn infants with blue or green light is the most common treatment of neonatal hyperbilirubinemia. Using bilirubin bound to human lymphoid and basal skin cells we obtained the green light dose dependency of the bilirubin phototoxicity to these cell types. Cells (3–5× 106/mL) were incubated with bilirubin complexed to human serum albumin (final concentrations 340 μM bilirubin, 150 μM albumin). Under these conditions all cells showed maximum binding of bilirubin. Irradiation with broadband green light (Λmax= 512 nm) over 24 h led to a light dose-dependent population of cells, which contained no bilirubin on the cell membrane as determined by Nomarski interference microscopy. The light-induced mechanism of the disappearance of bilirubin caused lethal membrane damage to the cells (trypan blue exclusion test). The cell kill rate increased with the irradiation dose and with the fraction of cells with no bilirubin. When 90% of lymphoid cells were bilirubin free, 46% of them were dead (using 480 J cm?1 green light). Similar results were obtained with basal skin cells. In addition, bilirubin-induced damage of cell membrane and nuclear membrane was also shown by transmission electron microscopy. Bilirubin (340 μM) in the dark led to 5% of the cells being killed. Basal skin cells bind 2.5 times more bilirubin molecules than lymphoid cells and showed a different bilirubin disappearance. Irradiation of bilirubin in carbon tetrachloride with 514.5 nm laser light showed generation of singlet oxygen via its luminescence at 1270 nm. These results demonstrate that green light phototherapy of hyperbilirubinemia may cause both skin and immune system damage.  相似文献   

8.
Staphylococcus saprophyticus, the food-borne bacteria present in dairy products, ready-to-eat food and environmental sources, has been reported with antibiotic resistance, raising concerns about food microbial safety. The antimicrobial resistance of S. saprophyticus requires the development of new strategies. Light- and photosensitizer-based antimicrobial photodynamic inactivation (PDI) is a promising approach to control microbial contamination, whereas there is limited information regarding the effectiveness of PDI on S. saprophyticus biofilm control. In this study, PDI mediated by natural bioactive compound (curcumin) associated with LED was evaluated for its potential to prevent and disrupt S. saprophyticus biofilms. Biofilms were treated with curcumin (50, 100, 200 µM) and LED fluence (4.32 J/cm2, 8.64 J/cm2, 17.28 J/cm2). Control groups included samples treated only with curcumin or light, and samples received neither curcumin nor light. The action was examined on biofilm mass, viability, cellular metabolic activity and cytoplasmic membrane integrity. PDI using curcumin associated with LED exhibited significant antibiofilm activities, inducing biofilm prevention and removal, metabolic inactivation, intracellular membrane damage and cell death. Likewise, scanning electronic microscopy observations demonstrated obvious structural injury and morphological alteration of S. saprophyticus biofilm after PDI application. In conclusion, curcumin is an effective photosensitizer for the photodynamic control of S. saprophyticus biofilm.  相似文献   

9.
A new star-shaped donor-acceptor molecule has been synthesized for application as the donor material in solution-processed bulk-heterojunction organic solar cells (OSCs). The molecule consists of a triphenylamine (TPA) unit as the core and a donor unit with three arms containing benzo[1,2,5]thiadiazole (BT) acceptor units and 5,5’’-dihexyl-2,2′:3′,2″-terthiophene (tTh) end groups. The molecule, denoted S(TPA-BT-tTh), exhibits a broad absorption band in the wavelength range 300-650 nm and high hole mobility of 1.1×10 -4 cm2 V -1 s 1 . An OSC device based on S(TPA-BT-tTh) as donor and [6,6]-phenyl C71 -butyric acid methyl ester (PC 70 BM) as the acceptor (1:3, w/w) exhibited a power conversion efficiency of 2.28% with a short circuit current density of 6.39 mA/cm2 under illumination of AM.1.5, 100 mW/cm2 .  相似文献   

10.
Previous work has shown that indocyanine green (ICG)‐assisted peeling of the internal limiting membrane during vitreoretinal surgery may damage the retinal pigment epithelium (RPE). The present study tested the direct toxic effects and phototoxic effects of ICG on cultured human RPE. RPE cells were exposed to ICG (0.5%, 5 min) with or without lutein (20 μM), followed by light irradiation at different doses of light energy (1.0,3.0 and 10.0 J/cm2). After 48 h, cells were collected and stained with trypan blue to obtain the number of viable and nonviable cells in different groups. Cultures exposed to ICG without light irradiation showed a significant decrease of viable cells (‐13.3%) and an increase of nonviable cells (x2.5‐fold) compared with cultures not exposed to either ICG or light, indicating the presence of direct toxic effects of ICG. In cultures exposed to ICG plus light irradiation (10.0 J/cm2), viable cells decreased significantly (‐45.0%) and nonviable cells increased significantly (x4.4‐fold) compared with cultures exposed to ICG alone. The damage to the RPE cells depended on the dose of light (1.0–10.0 J/cm2), indicating that ICG has a phototoxic effect as well as a toxic one. Lutein, an endogenous ocular antioxidant, had a protective effect on cultures exposed to ICG and light, cells treated with leutin showed an increase of viable cells (+74.6%) and decrease of nonviable cells (‐74.4%) compared with cultures without leutin but not on cultures exposed to ICG alone. Thus, it seems that photoactivated ICG kills cells through a photoxidative mechanism. Our study suggests that preoperative oral administration of lutein may protect against the phototoxic‐induced damage of ICG on the RPE cells.  相似文献   

11.
A set of novel conjugated polyfluorene co‐ polymers, poly[(9,9′‐didecylfluorene‐2,7‐diyl)‐co‐(4,7′‐di‐2‐thienyl‐ 2′,1′,3′‐benzothiadiazole‐5,5‐diyl)‐co‐(pyrene‐1,6‐diyl)], are synthesized via Pd(II)‐mediated polymerization from 2,7‐bis(4′,4′,5′, 5′‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)‐9,9′‐di‐n‐decylfluorene, 4, 7‐di(2‐bromothien‐5‐yl)‐2,1,3‐benzothiadiazole, and 1,6‐dibromopyrene with a variety of monomer molar ratios. The field‐effect carrier mobilities and optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The hole mobilities of the copolymers are found to be in the range 7.0 × 10?5 ? 8.0 × 10?4 cm2 V?1 s?1 and the on/off ratios were 8 × 103 ? 7 × 104. Conventional polymer solar cells (PSCs) with the configuration ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al are fabricated. Under optimized conditions, the polymers display power conversion efficiencies (PCEs) for the PSCs in the range 1.99–3.37% under AM 1.5 illumination (100 mW cm?2). Among the four copolymers, P2, containing a 2.5 mol % pyrene component incorporated into poly[9,9′‐didecylfluorene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PFDTBT) displays a PCE of 3.37% with a short circuit current of 9.15 mA cm?2, an open circuit voltage of 0.86 V, and a fill factor of 0.43, under AM 1.5 illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

13.
UV irradiation of hexacarbonyl-μ-η6:6-1,1′-bi(2,4,6-cycloheptatrien-1-yl)dichromium(O) (I) in THF in the presence of 1,3-butadiene (A), E-1,3-pentadiene (B) and EE-2,4-hexadiene (C) causes preferentially a twofold [4 + 6]-cycloaddition and formation of the hexacarbonyl-μ-2–5 : 8.9-η-2′–5′ : 8′,9′-η-11,11′-bi(bicyclo-[4.4.1]undeca-2,4,8-trien-11-yl)dichromium(O) complexes (IVA–IVC). Partial decomplexation after the first [4 + 6]-cycloaddition yields isomeric tricarbonyl-2–5:8,9-η- (IIA–IIC) and tricarbonyl-2′–7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)bicyclo[4.4.1]undeca-2,4,8-triene}chromium(O) complexes (IIIA–IIIC). With 2,3-dimethyl-1,3-butadiene (D) mainly dicarbonyl-2–6 : 2′–4′-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethylbicyclo[4.4.1]undeca-2″, 4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}chromium(O) (VD) besides small amounts of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–7″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(2″, 4″,6″-cycloheptatrien-1″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VID) and tricarbonyl-2′-7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)-8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-triene}-chromium(O) (IIID) is obtained. VD adds readily CO to yield tricarbonyl-2–5 : 8,9-η-11,11′-bi(8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-trien-11-yl)chromium(O) (VIID). Finally D adds to VID under formation of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–5″ : 8″,9″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethyl-bicyclo[4.4.1]- undeca-2″,4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VIIID). From IVA–IVC the hydrocarbon ligands (IXA–IXC) can be liberated by P(OCH3)3 in good yields. The structures of the compounds IIA–IXC were determined by IR  相似文献   

14.
Hematoporphyrin monomethyl ether (HMME) is a novel and promising second-generation porphyrin-related photosensitizer for photodynamic therapy (PDT). To study the effects of HMME PDT on choroidal neovascularization (CNV) in rats, the PDT was performed 20 min after HMME bolus injection, which was investigated prior to the PDT by fluorescence microscopy with laser-induced CNV, and delivered at an irradiance of 400, 600 and 1000 mW cm−2 corresponding to a fluence of 36, 54, 90 J cm−2 in PDT plan I (15 mg kg−1 HMME). In PDT plan II (30 mg kg−1 HMME), the laser had a constant irradiance of 600 mW cm−2, which was delivered for 60, 90 or 150 s, to also achieve total energy doses of 36, 54 or 90 J cm−2. CNV closure rates assessed by fluorescein angiography and histologic damage to treated areas of choroid and retina varied as a function of the dose of HMME and of the activating light energy fluence. Endothelial cell labeled by platelet/endothelial cell adhesion molecule-1 presented treated CNV lesions that were significantly reduced in size (P < 0.01). It can be concluded that PDT using HMME can effectively occlude CNV. HMME is a potentially useful photosensitizer for the reduction in CNV size of irradiated areas.  相似文献   

15.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

16.
A plastid mRNA (5 × 105 mol wt) appears as a burst 3 h after white light greening of steady state dark grown plants of Spirodela oligorrhiza. In this species, chlorophyll synthesis begins after 12 h. The light requirement is different from the pulse of far-red reversible red light required to abolish the lag of chlorophyll synthesis in many species, including Spirodela. Continuous high energy far-red is not stimulatory. When the illumination is not continued throughout the time of incorporation, the stimulation is minimal. Low energy blue and red light are stimulatory, and green and far-red light are ineffectual. Blue light was > 5 times as effective as red light at many dose levels. Illumination with 3 × 1017 quanta/m2/s (50pEm/cm2/s) blue light at 476 nm gave about half maximum stimulation.  相似文献   

17.
The synthesis and characterization of Ru (II) terpyridine complexes derived from 4′ functionalized 2,2′:6′,2″‐terpyridine (tpy) ligands are reported. The heteroleptic complexes comprise the synthesized ligands 4′‐(2‐thienyl)‐ 2,2′:6′,2″‐terpyridine) or (4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine and (dimethyl 5‐(pyrimidin‐5‐yl)isophthalate). The new complexes [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 9 ), [Ru(4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 10 ), and [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)(NCS)2] ( 11 ) were characterized by 1H‐ and 13C‐NMR spectroscopy, C, H, N, and S elemental analysis, UPLC‐ESI‐MS, TGA, FT‐IR, and UV‐Vis spectroscopy. The biological activities of the synthesized ligands and their Ru (II) complexes as anti‐inflammatory, antimicrobial, and anticancer agents were evaluated. Furthermore, the toxicity of the synthesized compounds was studied and compared with the standard drugs, namely, diclofenac potassium and ibuprofen, using hemolysis assay. The results indicated that the ligands and the complex 9 possess superior anti‐inflammatory activities inhibiting albumin denaturation (89.88–100%) compared with the standard drugs (51.5–88.37%) at a concentration of 500 μg g?1. These activities were related to the presence of the chelating N‐atoms in the ligands and the exchangeable chloro‐ groups in the complex. Moreover, the chloro‐ and thiophene groups in complex 9 produce a higher anticancer activity compared with its isothiocyanate derivative in the complex 11 and the 3,4‐dimethoxyphenyl moiety in complex 10 . Considering the toxicity results, the synthesized ligands are nontoxic or far less toxic compared with the standard drugs and the metal complexes. Therefore, these newly synthesized compounds are promising anti‐inflammatory agents in addition to their moderate unique broad antimicrobial activity.  相似文献   

18.
New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum‐chloride‐phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm?2. Cationic NE‐ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE‐ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE‐ClAlPc reduced cell metabolism by 70%. Anionic NE‐ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE‐ClAlPc showed better results for Candida biofilms.  相似文献   

19.
The new flavanon lehmannin (I) has been isolated from the roots ofAmmothamnus lehmannii Bunge. On the basis of chemical transformations and with the aid of physicochemical characteristics it has been established that compound (I) has the structure of 2′,4′,7-trihydroxy-8-(2″-isopropenyl-5″-methylhex-4″-enyl)flavanone. The alkaline cleavage of lehmannin gave ammothamnidin (V). The structure proposed previously for the chalcone ammothamnidin has been corrected. It has been shown that it has the structure of 2,2′-4,4′-tetrahydroxy-3′-(2″-isopropenyl-5″-methylhex-4″- enyl)chalcone. A comparative study of the13C NMR spectra of a number of flavanones has revealed an empirical law permitting the prediction of the presence or absence of substituents (OH and OCH3) at C-2′ from the value of the chemical shift of the signal of the C-2 carbon atom.  相似文献   

20.
Our recent study follows up an earlier one which demonstrated hypericin-mediated photocytotoxic effects on HT-29 adenocarcinoma cells by light fractionation with a longer dark pause between two unequal light doses (Sackova, A. [2005] Photochem. Photobiol. 81 , 1411–1416). Here, we present closer study on events invoked by sublethal light dose (1 J cm−2) during the period of 6 h that is sufficient to invoke resistance to second lethal dose (11 J cm−2). First, we proved that the dark pause of 6 h, but not 1 h, resulted in better cell survival with suppressed phosphatidylserine externalization, decreased reactive oxygen species production and hypericin content as well as altered expression of HSP70, GRP94, clusterin, nuclear factor (NF)-κB, IκB-α or Mcl-1. NF-κB activity assay confirmed activation of this early-response pathway. However, inhibition of IκB (IKK) kinase by parthenolide by stopping NF-κB release from the complex with IκB did not prevent onset of resistance, but it invoked some resistance even in groups with shorter, 1 h dark pause. Therefore, we predict involvement of another signaling pathway, located upstream from NF-κB, responsible for onset of resistance to photodynamic therapy with hypericin in colon adenocarcinoma cells HT-29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号