首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The kinetics and mechanisms of the reaction of cysteine with cysteine thiosulfinate ester in aqueous solution have been studied by stopped-flow spectrophotometry between pH 6 and 14. Two reaction pathways were observed for pH > 12: (1) an essentially pH-independent nucleophilic attack of cysteinate on cysteine thiosulfinate ester, and (2) a pH-dependent fast equilibrium protonation of cysteine sulfenate that is followed by rate-limiting comproportionation of cysteine sulfenic acid with cysteinate to give cystine. For 6 < pH < 12, the rate-determining reaction between cysteinate and cysteine thiosulfinate ester becomes pH-dependent due to the protonation of their amine groups. Hydrolysis of cysteine thiosulfinate ester does not play a role in the aforementioned mechanisms because the rate-determining nucleophilic attack by hydroxide is relatively slow.  相似文献   

3.
Cysteine sulfenic acid has been generated in alkaline aqueous solution by oxidation of cysteine with hypohalous acid (HOX, X = Cl or Br). The kinetics and mechanisms of the oxidation reaction and the subsequent reactions of cysteine sulfenic acid have been studied by stopped-flow spectrophotometry between pH 10 and 14. Two reaction pathways were observed: (1) below pH 12, the condensation of two sulfenic acids to give cysteine thiosulfinate ester followed by the nucleophilic attack of cysteinate on cysteine thiosulfinate ester and (2) above pH 10, a pH-dependent fast equilibrium protonation of cysteine sulfenate that is followed by rate-limiting comproportionation of cysteine sulfenic acid with cysteinate to give cystine. The observation of the first reaction suggests that the condensation of cysteine sulfenic acid to give cysteine thiosulfinate ester can be competitive with the reaction of cysteine sulfenic acid with cysteine.  相似文献   

4.
Cysteine sulfenic acid (Cys-SOH) is an elusive intermediate in reactive oxygen species-induced oxidation reactions of many proteins such as peroxiredoxins and tyrosine phosphatases. Cys-SOH is proposed to play a vital role in catalytic and signaling functions. The formation of cysteine sulfinic acid (Cys-SO(2)H) and cysteine sulfonic acid (Cys-SO(3)H) has been implicated in the activation of matrix metalloproteinase-7 (MMP-7) and oxidation of thiol to cysteine sulfinic acid has been associated with the autolytic cleavage of MMP-7. We have examined the formation of cysteine sulfenic acid in a synthetic peptide PRCGVPDVA, which is a cysteine switch domain of MMP-7 and other matrix metalloproteases. We have prepared the cysteine sulfenic acid containing peptide, PRC(SOH)GVPDVA, by reaction with hydroxyl radicals generated by the Fenton reaction (Fe(+2)/H(2)O(2)). We characterized this modified peptide by tandem mass spectrometry and accurate mass measurement experiments. In addition, we used 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl) reagent to form an adduct with PRC(SOH)GVPDVA to provide additional evidence for the viability of PRC(SOH)GVPDVA in solution. We also characterized an intramolecular cysteine sulfinamide cross-link product PRC[S(O)N]GVPDVA based on tandem mass spectrometry and accurate mass measurement experiments. These results contribute to the understanding of a proteolytic cleavage mechanism that is traditionally associated with MMP activation.  相似文献   

5.
6.
The modification of peptides and proteins has emerged as a powerful means to efficiently prepare high value bioconjugates for a range of applications in chemical biology and for the development of next-generation therapeutics. Herein, we report a novel method for the chemoselective late-stage modification of peptides and proteins at cysteine in aqueous buffer with suitably functionalised diaryliodonium salts, furnishing stable thioether-linked synthetic conjugates. The power of this new platform is showcased through the late-stage modification of the affibody zEGFR and the histone protein H2A.

New operationally simple platform for the chemoselective arylation of cysteine in peptides and proteins to access a variety of high value bioconjugates.  相似文献   

7.
Free polyethylene glycol (PEG) is a byproduct produced during the process of pegylation and should be removed for the purification of pegylated proteins. In this paper, it was used to develop a new method for obtaining the modification extent of pegylated proteins. This method included two steps of operation. Firstly, the free PEG was separated from crude reaction mixture of pegylated proteins by CM-Sepharose FF. Then PEG was determined based on the formation of a complex with barium chloride and iodine solution. The effective detective range of PEG was 0-7.5 μg/ml. The modification extent was calculated according to a formula. This method is simple, sensitive, and applicable to all of the PEG derivatives. The most distinctive aspect is that it does not consume proteins.  相似文献   

8.
We have developed a method for rapidly quantifying the extent to which the functionally important Met144 and Met145 residues near the C-terminus of calmodulin (CaM) are converted to the corresponding sulfoxides, Met(O). The method utilizes a whole protein collision-induced dissociation (CID) approach on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. Using standards of CaM oxidized by hydrogen peroxide (H2O2) or peroxynitrite (ONOO), we demonstrated that CID fragmentation of the protein ions resulted in a series of C-terminal singly charged y1–y15 ions. Fragments larger than y4 exhibited mass shifts of +16 or +32 Da, corresponding to oxidation of one or two methionines, respectively. To assess the extent of oxidative modification for Met144 and Met145 to Met(O), we averaged the ratio of intensities for y n , y n + 16, and y n + 32 ions, where n = 6–9. By alternating MS and CID scans at low and high collision energies, this technique allowed us to rapidly determine both the distribution of intact CaM oxiforms and the extent of oxidative modification in the C-terminal region of the protein in a single run. We have applied the method to studies of the repair of fully oxidized CaM by methionine sulfoxide reductases (MsrA and MsrB), which normally function in concert to reduce the S and R stereoisomers of methionine sulfoxide. We found that repair of Met(O)144 and Met(O)145 did not go to completion, but was more efficient than average Met repair. Absence of complete repair is consistent with previous studies showing that accumulation of methionine sulfoxide in CaM can occur during aging (Gao, J.; Yin, D.; Yao, Y.; Williams, T. D.; Squier, T. C. Biochemistry 1998, 37, 9536–9548).  相似文献   

9.
Oxidation of a protein cysteine thiol to sulfenic acid, termed S-sulfenylation, is a reversible post-translational modification that plays a crucial role in regulating protein function and is correlated with disease states. The majority of reaction-based small molecule and immunochemical probes used for detecting sulfenic acids are based on the 5,5-dimethyl-1,3-cyclohexanedione (dimedone) scaffold, which is selective, but suffers from low reactivity. In addition, mechanistic details and features that diminish or enhance nucleophile reactivity remain largely unknown. A significant hurdle to resolving the aforementioned issues has been the chemically unstable nature of small-molecule sulfenic acid models. Herein, we report a facile mass spectrometry-based assay and repurposed dipeptide-based model to screen a library of cyclic C-nucleophiles for reactivity with sulfenic acid under aqueous conditions. Observed rate constants for ∼100 cyclic C-nucleophiles were obtained and, from this collection, we have identified novel compounds with more than 200-fold enhanced reactivity, as compared to dimedone. The increase in reactivity and retention of selectivity of these C-nucleophiles were validated in secondary assays, including a protein model for sulfenic acid. Together, this work represents a significant step toward developing new chemical reporters for detecting protein S-sulfenylation with superior kinetic resolution. The enhanced rates and varied composition of the C-nucleophiles should enable more comprehensive analyses of the sulfenome and serve as the foundation for reversible or irreversible nucleophilic covalent inhibitors that target oxidized cysteine residues in therapeutically important proteins.  相似文献   

10.
We examined the fragmentation of the electrospray-produced [M-H]- and [M-2H]2- ions of a number of peptides containing two acidic amino acid residues, one being aspartic acid (Asp) or glutamic acid (Glu), and the other being cysteine sulfinic acid [C(SO2H)] or cysteine sulfonic acid [C(SO3H)], on an ion-trap mass spectrometer. We observed facile neutral losses of H2S and H2SO2 from the side chains of cysteine and C(SO2H), respectively, whereas the corresponding elimination of H2SO3 from the side chain of C(SO3H) was undetectable for most peptides that we investigated. In addition, the collisional activation of the [M-H]- ions of the C(SO2H)-containing peptides resulted in the cleavage of the amide bond on the C-terminal side of the C(SO2H) residue. Moreover, collisional activation of the [M-2H]2- ions of the above Asp-containing peptides led to the cleavage of the backbone N-Calpha bond of the Asp residue to give cn and/or its complementary [zn-H2O] ions. Similar cleavage also occurred for the singly deprotonated ions of the otherwise identical peptides with a C-terminal amide functionality, but not for the [M-H]- ions of same peptides with a free C-terminal carboxylic acid. Furthermore, ab initio calculation results for model cleavage reactions are consistent with the selective cleavage of the backbone N-Calpha bond in the Asp residue.  相似文献   

11.
It has been found that the double bond of free, unreacted acrylamide in a gel can react with a free -SH group of proteins, forming a cysteinyl-S-propionamide adduct. When beta-lactoglobulin was incubated at concentration levels lower than those of free acrylamide, left after polymerizing a 5% T, 4% C gel (barely 12 mM), under anaerobic conditions in 0.1 M borate, pH 9.5, for 1 h and then the tryptic digests analyzed by high performance liquid chromatography (HPLC), two new peptides were detected. The two new peaks were recovered and sequenced by the Edman degradation procedure. They correspond to the sequence from Leu-149 to Ile-162. Residue No. 160 was found to be a cysteinyl-S-propionamide reaction product. Interestingly, only this residue, out of a total of 5 Cys residues, had reacted. No other amino acids (including -NH2 terminus and free -NH2 in Lys) reacted with free acrylamide. The addition of free acrylamide to the -SH group could be completely inhibited if: (i) the gel was extensively washed prior to sample application, or (ii) the gel was incubated for 1 h in 100 mM free Cys.  相似文献   

12.
The goal of this study is to explore the application of epigenetic markers in the identification of biofluids that are commonly found at the crime scene. A series of genetic loci were examined in order to define epigenetic markers that display differential methylation patterns between blood, saliva, semen, and epithelial tissue. Among the different loci tested, we have identified a panel of markers, C20orf117, ZC3H12D, BCAS4, and FGF7, that can be used in the determination of these four tissue types. Since methylation modifications occur at cytosine bases that are immediately followed by guanine bases (CpG sites), methylation levels were measured at CpG sites spanning each marker. Up to 11 samples of each tissue type were collected and subjected to bisulfite modification to convert unmethylated CpG-associated cytosine bases to thymine bases. The bisulfite modified DNA was then amplified via nested PCR using a primer set of which one primer was biotin labeled. Biotinylated PCR products were in turn analyzed and the methylation level at each CpG site was quantitated by pyrosequencing. The percent methylation values at each CpG site were determined and averaged for each tissue type. The results indicated significant methylation differences between the tissue types. The methylation patterns at the ZC3H12D and FGF7 loci differentiated sperm from blood, saliva, and epithelial cells. The C20orf117 locus differentiated blood from sperm, saliva, and epithelial cells and saliva was differentiated from blood, sperm, and epithelial cells at a fourth locus, BCAS4. The results of this study demonstrate the applicability of epigenetic markers as a novel tool for the determination of biofluids using bisulfite modification and pyrosequencing.  相似文献   

13.
A method is proposed which permits the determination of the amounts of cystine an cysteine in the form pf systeic acid in various proteins of animal and plant origin — even in those in which, on the analysis of standard hydrolysates, the peaks of cysteine are not detected because of their low concentration.Institute of Chemistry, Academy of Sciences of the Tadzhik SSR, Dushanbe. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 551–554, July–August, 1985.  相似文献   

14.
A method is proposed which permits the determination of the amounts of cystine an cysteine in the form pf systeic acid in various proteins of animal and plant origin — even in those in which, on the analysis of standard hydrolysates, the peaks of cysteine are not detected because of their low concentration.  相似文献   

15.
Lei Zhang 《Mikrochimica acta》2008,161(1-2):191-200
A covalently modified glassy carbon electrode with cysteine has been fabricated via an electrochemical oxidation procedure and was applied to induce the electrochemical differentiation between dopamine (DA) and ascorbic acid (AA). Based on the electrostatic interactions between the negatively charged groups on the electrode surface and DA and AA, the modified electrode enhanced the oxidation of DA, reducing the overpotential by 180 mV, and hindered the oxidation of AA, shifting the oxidation potential positively by 170 mV. The peak current for DA at the modified electrode was greatly enhanced and that for AA was significantly decreased, which allows the determination of DA in the presence of AA. The differential pulse peak current was linearly dependent on DA concentration over the range of 5 × 10−6–2 × 10−4 mol L−1. The detection limit was 1.8 × 10−6 mol L−1. The selectivity and sensitivity for dopamine is due to charge discrimination and analyte accumulation. The modified electrode has been applied to the determination of DA in the presence of AA. Correspondence: L. Zhang, Department of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Guilin Rd 100, Shanghai 200234, P.R. China  相似文献   

16.
Wang H  Wang WS  Zhang HS 《Talanta》2001,53(5):1015-1019
A spectrofluorimetric method for the determination of cysteine at trace and ultra trace levels (0-1.82 x 10(-5) mol l(-1)) has been developed. It is based on the efficient inhibition action of cysteine on the fluorescent system of Cd(II)-8-hydroxyquinoline-5-sulphonic acid complex (Cd(II)-HQS) (lambda(ex) 364.8 nm, lambda(em) 510.4 nm) solution at pH 8.5. The method has been applied to protein hydrolysate and cystine electrolyte samples.  相似文献   

17.
The conservation of chemoselectivity becomes invalid for multiple electrophilic warheads during protein bioconjugation. Consequently, it leads to unpredictable heterogeneous labeling of proteins. Here, we report that a linchpin can create a unique chemical space to enable site-selectivity for histidine and aspartic acid modifications overcoming the pre-requisite of chemoselectivity.

Linchpin-enabled promiscuous electrophile uncovers an unchartered reactivity landscape for the precision engineering of proteins.  相似文献   

18.
Here we examined the fragmentation, on a quadrupole ion-trap mass spectrometer, of the protonated ions of a group of peptides containing one arginine and two different acidic amino acids, one being aspartic acid (Asp) or glutamic acid (Glu) and the other being cysteine sulfinic acid [C(SO2H)] or cysteine sulfonic acid [C(SO3H)]. Our results showed that, upon collisional activation, the cleavage of the peptide bond C-terminal to C(SO2H) is much more facile than that of the peptide bond C-terminal to Asp, Glu, or C(SO3H). There is no significant difference, however, in susceptibility to cleavage of peptide bonds that are C-terminal to Asp, Glu, and C(SO3H). To understand these experimental observations, we carried out B3LYP/6-31G* density functional theory calculations for a model cleavage reaction of GXG --> b2 + Gly, in which X is Asp, Glu, C(SO2H), or C(SO3H). Our calculation results showed that the cleavage reaction is thermodynamically more favorable when X = C(SO2H) than when X = Asp or C(SO3H). We attributed the less facile cleavage of the amide bond after Glu to that the formation of a six-membered ring b ion for Glu-bearing peptides is kinetically not as favorable as the formation of a five-membered ring b ion for peptides containing the other three acidic amino acids. The results from this study may provide useful tools for peptide sequencing.  相似文献   

19.
20.
It has often been debated whether the presence of persulfate in a polyacrylamide gel could lead to the oxidation of cysteine (Cys) in proteins to cysteic acid. In fact, direct incubation of bovine serum albumin (BSA) with peroxodisulfate and periodate barely alters the isoelectric point (pI) and does not produce any cysteic acid. In contrast, caroate (peroxomonosulfate) and perphthalate strongly lower the pI of BSA. In the former case it as demonstrated that 4-Cys (of a total of 35) were converted into cysteic acid. Perphthalate was found to be, by far, the strongest oxidant: 15 (of 35) Cys residues were oxidized to cysteic acid and all methionine groups were destroyed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号