首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
提出了自优化扩散量子MonteCarlo差值法,这是一个集优化、扩散和相关取样三项技术于一身的MonteCarlo新算法.这个算法能够在扩散过程中直接计算两个体系之间的能量差,且使计算结果的统计误差达到10-5hartree数量级,获得相关能达80%以上.应用该方法研究分子势能面,使用"刚性移动"模型,利用Jacobi变换使分子两个几何构型的能量计算具有很好的正相关性,因而能得到准确的能量差值和分子势能面.另外,我们还首创了"平衡后留样"技术,可节省50%以上的计算量.该算法还可应用于分子光谱、化学反应能量变化值等领域的研究.  相似文献   

2.
黄宏新 《中国化学》2005,23(11):1474-1478
本文提出了精确固定节面量子Monte Carlo差值法,这个新算法能够在精确固定节面量子Monte Carlo方法的基础上直接计算两个体系之间的能量差,且使计算结果的统计误差达到10-2 kJ/mol 数量级,获得电子相关能90%以上。我们把这个新算法应用于分子势能面的研究中,使用一个“刚性移动”模型,利用Jacobi变换使分子两个几何构型的能量计算具有很好的正相关性,因而能得到准确的能量差值,于是精确的分子势能面就可以得到。这个新算法已经被使用到BH分子基态势能曲线和H3分子势能面的研究。这个算法还可应用于分子光谱、化学反应能量变化值等领域的研究。  相似文献   

3.
提出了精确固定节面量子Monte Carlo差值法, 这个新算法能够在精确固定节面量子Monte Carlo方法的基础上直接计算两个体系之间的能量差, 且使计算结果的统计误差达到10-5 hartree 数量级, 获得电子相关能90%以上. 我们把这个新算法应用于分子势能面的研究中, 使用一个“刚性移动”模型, 利用Jacobi变换使分子两个几何构型的能量计算具有很好的正相关性, 因而能得到准确的能量差值, 由此就可以得到精确的分子势能面.  相似文献   

4.
The method of local increments is used in connection with an embedded cluster approach and wave function based quantum chemical ab initio methods to describe the adsorption of a single CO molecule on the MgO(001) surface. The first step in this approach is a conventional Hartree-Fock calculation. The occupied orbitals are then localized by means of the Foster-Boys localization procedure, and the full system is decomposed into several "subunits" that consist of the orbitals localized at the CO molecule and at the Mg and O atoms of the MgO cluster. The correlation energy is expanded into a series of local n-body increments that are evaluated separately and independently. In this way, big savings in computer time can be achieved because (a) the treatment of a large system is replaced with a series of much faster calculations for small subsystems and (b) the big basis sets necessary for describing dispersion effects are only needed for the atoms in the respective subsystem while all other atoms can be treated by medium size Hartree-Fock type basis sets. The coupled electron pair approach, CEPA, an approximate coupled cluster method, is used to calculate the correlation energies of the various subsystems. For the vertical adsorption of CO on top a Mg atom of the MgO(001) surface with the C atom toward Mg, the individual one- and two-body increments are calculated as functions of the CO-MgO separation and a full potential energy curve is constructed from them. A very shallow minimum with an adsorption energy of 0.016 eV at a Mg-C distance of 3.04 ? is found at the Hartree-Fock level, while inclusion of correlation (dispersion) effects shortens the Mg-C distance to 2.59 ? and yields a much larger adsorption energy of 0.124 eV. This is in very good agreement with the best experimental value of 0.14 eV. The basis set superposition error, BSSE, was fully corrected for by the counterpoise method and the bonding mechanism was analyzed at the Hartree-Fock level by means of the constrained space orbital variation, CSOV, analysis.  相似文献   

5.
The dynamical Lie algebraic (DLA) method is used to describe statistical mechanics of energy transfer in rotationally inelastic molecule–surface scattering. Statistical average values of an observable for the scattering system are calculated in terms of density operator formalism in statistical mechanics. Employing a cubic expansion procedure of molecule–surface interaction potential leads to generation of a dynamical Lie algebra. Thus these statistical average values as a function of the group parameters can be obtained analytically in this formulation. The group parameters can be found from solving a set of coupled nonlinear differential equations. The DLA method, which has no need for determination of transition probabilities in advance as made routinely in the calculation, offers an efficient alternative to the method for computing the statistical average values. This method is much less computationally intensive because most of calculations can be analytically carried out. The average final rotational energies and their dependence on the main dynamic variables and the average interaction potential are presented for the rotationally inelastic scattering of NO molecules from a flat, static Ag(111) surface. Direct comparison is made between the predictions of this model calculation and experiment. The model reproduces well the degree of rotational excitation and correlation between the average final translational and the average rotational energies. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

6.
In the present paper, the theoretical approach developed in paper 1 is applied to an NH(3) molecule adsorbed on a graphite substrate. The potential energy surfaces (PESs) for the interaction between the molecule and the graphite crystal are described in detail. The molecule exhibits two quasi-equivalent angular position minima of energy ("up" and "down") along the perpendicular axis to the surface. The PES calculations also indicate that the NH(3) molecule has a rotational motion that is moderately hindered, with an energy barrier value of about 14 meV and also a quasi-free lateral translational motion above the surface, indicating a weak corrugation of the graphite (0001) surface. The isosteric heat of adsorption is calculated and is in agreement with the experimental one. Finally, the infrared absorption spectra for the vibrational mode frequency regions are obtained.  相似文献   

7.
The acid-base approach to the calculation of solid surface free energy and liquid-liquid interfacial tensions is a practical example of application of correlation analysis, and thus it is an approximate approach. In these limits, and provided that wide and well-obtained sets of contact angles or interfacial tension data are used for their computation, surface tension components can be considered as material properties. Although their numerical value depends on the characteristics of the chosen reference material, their chemical meaning is independent on the selected scale. Contact angles contain accessible information about intermolecular forces; using surface tension component (STC) acid-base theory, one can extract this information only making very careful use of the mathematical apparatus of correlation analysis. The specific mathematical methods used to obtain these results are illustrated by using as an example a base of data obtained by the supporters of the equation-of-state theory (EQS). The achievements are appreciably good and the agreement between STC and EQS is discussed.  相似文献   

8.
The numerical simulation of the internal motions of a molecule undergoing a unimolecular reaction on an assumed potential energy surface requires the step-by-step solution of a set of simultaneous differential equations. After several thousand time steps, due to differences in the handling of rounding errors in different computing systems, the situation often arises that no two computing machines will give the same result for a given trajectory, even when running the identical algorithm.  相似文献   

9.
The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state has been determined from ab initio calculations using the coupled‐cluster approach in conjunction with the correlation‐consistent core‐valence basis sets up to septuple‐zeta quality. The higher‐order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm−1. The vibration‐rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high‐resolution vibration‐rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The minimum energy path for the rearrangement LiOB OBLi was calculated with the SCF approximation using a double-zeta plus polarization basis set. Stationary points on the potential surface were studied with the help of the CASSCF method using different choices of active space. The results indicate that LiBO may be regarded as a polytopic type molecule. The relative energies of different geometrical configurations changed considerably when the CASSCF method was used, compared to those obtained at the SCF level, demonstrating the importance of correlation effects for this system.  相似文献   

11.
By calculating the electron affinity and ionization energy of different functional groups, CCSD electronegativity values are obtained, which implicitly account for the effect of the molecular environment. This latter is approximated using a chemically justified point charge model. On the basis of Sanderson's electronegativity equalization principle, this approach is shown to lead to reliable "group in molecule" electronegativities. Using a slight adjustment of the modeled environment and first-order principles, an electronegativity equalization scheme is obtained, which implicitly accounts for the major part of the external potential effect. This scheme can be applied in a predictive manner to estimate the charge transfer between two functional groups, without having to rely on cumbersome calibrations. A very satisfactory correlation is obtained between these charge transfers and those obtained from an ab initio calculation of the entire molecule.  相似文献   

12.
Simulating a quantum system is more efficient on a quantum computer than on a classical computer. The time required for solving the Schr?dinger equation to obtain molecular energies has been demonstrated to scale polynomially with system size on a quantum computer, in contrast to the well-known result of exponential scaling on a classical computer. In this paper, we present a quantum algorithm to obtain the energy spectrum of molecular systems based on the multiconfigurational self-consistent field (MCSCF) wave function. By using a MCSCF wave function as the initial guess, the excited states are accessible. Entire potential energy surfaces of molecules can be studied more efficiently than if the simpler Hartree-Fock guess was employed. We show that a small increase of the MCSCF space can dramatically increase the success probability of the quantum algorithm, even in regions of the potential energy surface that are far from the equilibrium geometry. For the treatment of larger systems, a multi-reference configuration interaction approach is suggested. We demonstrate that such an algorithm can be used to obtain the energy spectrum of the water molecule.  相似文献   

13.
It has been well‐documented that about 90% of the total correlation energy of atomic systems can be obtained by solving so‐called pair equations. For atoms, this approach requires solving partial differential equations (PDE) in two variables. In case of a diatomic molecule, we face devising a method for treating PDEs in five variables. This article shows how a well‐established finite difference method used to solve Hartree–Fock equations for diatomic molecules can be extended to solve numerically a model two‐electron Schrödinger equation for such systems. We show that using less than 100 grid points in each variable, it is possible to obtain the total energy of the helium atom and hydrogen molecule with a chemical accuracy and the S energy of the helium atom and hydride ion as accurately as the best results available. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
 构造了氮-镍相互作用的5-参数Morse势,研究了氮原子在Ni(\r\n100),Ni(110)和Ni(111)平坦表面的吸附和振动,获得了氮原子\r\n在三个低指数表面的吸附位、吸附构型、结合能和本征振动等数据,计\r\n算结果与实验结果非常吻合.同时,与Ni(100)表面对比,系统研究\r\n了氮原子在Ni(510)台阶面的吸附和扩散.计算结果表明,氮原子在\r\n台阶下部形成最稳定的吸附态,台阶对下台面上扩散的氮原子形成捕获\r\n势,对上台面上扩散的氮原子形成反射势.  相似文献   

15.
16.
The conformational energy of acetylcholine is minimized with respect to the distances between nonbonded atoms with the help of the Bremermann method of unconstrained global optimization. The set of distances for which the energy is the absolute minimum is then used to calculate the coordinates of all the atoms and hence the conformation of the molecule. The simplest type of potential function, namely the classical potential function is chosen for the calculation. The major advantages of this method are (i) that the starting point need not be close to the actual solution, (ii) that it gives the global minimum, irrespective of the starting point, (iii) that it is very general and can be used for any type of potential function, and (iv) that it does not require the computation of gradients. The results obtained are in very good agreement with those of other workers.  相似文献   

17.
The equilibrium structure and potential energy surface of dialuminum monoxide, Al(2)O, have been determined from large-scale ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with basis sets of triple- through quintuple-zeta quality. The effects of core-electron correlation on the calculated molecular parameters were investigated. The vibrational-rotational energy levels of the Al(2) (16)O and Al(2) (18)O isotopic species were calculated by a variational approach. The predicted energy levels are in remarkably good agreement with the available experimental spectroscopic data (from laser-induced fluorescence), demonstrating that the Al(2)O molecule is linear at equilibrium in its ground electronic state. The reported theoretical data settle controversies between the experimental studies about the equilibrium structure and assignment of vibrational fundamentals of the Al(2)O molecule.  相似文献   

18.
We present results from kinetic Monte Carlo (KMC) simulations of diffusion in a model glass former. We find that the diffusion constants obtained from KMC simulations have Arrhenius temperature dependence, while the correct behavior, obtained from molecular dynamics simulations, can be super-Arrhenius. We conclude that the discrepancy is due to undersampling of higher-lying local minima in the KMC runs. We suggest that the relevant connectivity of minima on the potential energy surface is proportional to the energy density of the local minima, which determines the "inherent structure entropy." The changing connectivity with potential energy may produce a correlation between dynamics and thermodynamics.  相似文献   

19.
The scaling of dynamical correlation energy in molecules obtained by the correlation functionals of density functional theory (DFT) is examined. The approach taken is very similar to the scaled external correlation method of Brown and Truhlar but is based on the observation that DFT correlation functionals, especially the LYP, appear to represent the dynamical portion of the correlation energy in molecules. We examine whether higher accuracy in atomization energies can be gained by scaling without significant deterioration of the structural and spectroscopic properties of the molecules using four DFT functionals (BLYP, OLYP, B3LYP, and O3LYP) on 19 molecules including the six molecule AE6 database, the latter being representative of a much larger, 109 molecule training set. We show that, with molecule specific scale factors, nearly perfect agreement with experiment can be achieved in atomization energies without increasing the average errors in other molecular properties relative to the DFT calculation. We further show that it is possible to find optimal scale factors which reduce the mean unsigned error per bond to levels comparable to those of some multilevel multicoefficient methods.  相似文献   

20.
An improved semiempirical method for computing electrostatic potential-derived atomic charges is described. It includes a very fast algorithm for the generation of the grid points around the molecule and the calculation of the electrostatic potential at these points. The dependency of the atomic point charges obtained on the number of grid points used in the fitting procedure is examined. For “buried” atoms a high density grid is necessary. It is possible to obtain 6–31G*-quality atom-centered point charges, even for phosphorus compounds, using AM1 or PM3. This approach can therefore be recommended for general use in QSAR or molecular mechanics for any organic and bioorganic system up to about 200 atoms. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 744–756, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号