首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Group 15 elements P, As, Sb, and Bi all have layered structures consisting of six-membered rings under ambient conditions and attain the body-centered cubic (bcc) structure at the highest pressures applied. In the intermediate pressure region, however, phosphorus and its heavier congeners behave profoundly differently. In this region P first attains the open packed simple cubic (sc) structure for a wide range of pressures and then transforms into the rarely observed simple hexagonal (sh) structure. For the heavier congeners complex, incommensurately modulated host-guest structures emerge as intermediate pressure structures. We investigated the high-pressure behavior of P and As by ab initio density functional calculations in which pseudopotentials and a plane wave basis set were employed. The incommensurately modulated high-pressure structure of As was approximated by a supercell. Our calculations reproduced the experimentally established pressure stability ranges of the sc and sh structures for P and the host-guest structure for As very well. We found that the sc and especially the sh structure are decisively stabilized by the admixture of d states in the occupied levels of the electronic structure. This admixture releases s-s antibonding states above the Fermi level (s-d mixing). With pressure, s-d mixing increases rapidly for P, whereas it remains at a low level for As. As a consequence, the band energy contribution to the total energy determines the structural stability for P in the intermediate pressure region, giving rise to simple packed structures. On the other hand, in the intermediate pressure region of the heavier Group 15 elements, a delicate interplay between the electrostatic Madelung energy and the band energy leads to the formation of complex structures.  相似文献   

2.
The lowest singlet and triplet potential energy surfaces for all group 15 HAsXH (X = N, P, As, Sb, and Bi) systems have been explored through ab initio calculations. The geometries of the various isomers were determined at the QCISD/LANL2DZdp level and confirmed to be minima by vibrational analysis. In the case of nitrogen, the global minimum is found to be a triplet H(2)NAs structure. For the phosphorus case, singlet trans-HAs==PH is found to be global minima surrounded by large activation barriers, so that it should be observable. For arsenic, theoretical investigations demonstrate that the stability of HAsAsH isomers decreases in the order singlet trans-HAs==AsH > triplet H(2)AsAs > singlet cis-HAs==AsH > triplet HAsAsH > singlet H(2)AsAs. For antimony and bismuth, the theoretical findings suggest that the stability of HAsXH (X = Sb and Bi) systems decreases in the order triplet H(2)AsX approximately singlet trans-HAs==XH > singlet cis-HAs==XH > triplet HAsXH > triplet H(2)XAs > singlet H(2)AsX > singlet H(2)XAs. Our model calculations indicate that the relativistic effect on heavier group 15 elements should play an important role in determining the geometries as well as the stability of HAsXH molecules. The results obtained are in good agreement with the available experimental data and allow a number of predictions to be made.  相似文献   

3.
The C-unsubstituted 3-benzoheteroepines (2a-g) containing group 15 (P, As, Sb, and Bi) and group 16 (S, Se, and Te) heavier elements were prepared by the reaction of the corresponding metal reagents with (Z,Z)-o-bis(beta-lithiovinyl)benzene (5) which was derived in two steps from a common o-phthalaldehyde (3). The heteroepines (2) thus obtained were thermally labile towards heteroatom extrusion, and their half-lives on heating estimated from (1)H-NMR spectral analysis showed that the 3-benzoheteroepines (2) were far less stable than the corresponding 1-benzoheteroepines (1). The 2,4-bis(trimethylsilyl)-3-benzoheteroepines (17) containing Sb, Bi, and Te were also prepared from o-diiodobenzene (9) in 6 steps and were found to be more stable than the corresponding C-unsubstituted heteroepines (2).  相似文献   

4.
Zhao J  Liu H  Ehm L  Chen Z  Sinogeikin S  Zhao Y  Gu G 《Inorganic chemistry》2011,50(22):11291-11293
A new type of disordered substitution alloy of Sb and Te at above 15.1 GPa was discovered by performing in situ high-pressure angle-dispersive X-ray diffraction experiments on antimony telluride (Sb(2)Te(3)), a topological insulator and thermoelectric material, at room temperature. In this disordered substitution alloy, Sb(2)Te(3) crystallizes into a monoclinic structure with the space group C2/m, which is different from the corresponding high-pressure phase of the similar isostructural compound Bi(2)Te(3). Above 19.8 GPa, Sb(2)Te(3) adopts a body-centered-cubic structure with the disordered atomic array in the crystal lattice. The in situ high-pressure experiments down to about 13 K show that Sb(2)Te(3) undergoes the same phase-transition sequence with increasing pressure at low temperature, with almost the same phase-transition pressures.  相似文献   

5.
Elemental chains     
Results of first‐principle density‐functional calculations on isolated, infinite, periodic chains containing only one type of atoms are reported. As examples we consider chains of Se, Al, Ba, Bi, Sb, and Sr. Se represents a material for which chain‐like structures are found naturally, whereas Al prefers structures with high coordinations. Moreover, linear chains have been found in high‐pressure phases of Ba, Bi, Sb, and Sr. For these, the structure of the linear chains is incommensurate with that of the surrounding host. For Se and Al we compare different structures (helical, linear, zigzag, cis, double zigzag, and tetragonal chains), whereas for the other elements we consider only linear chains. Special emphasis is put on structure, relative stability, and band structures. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

6.
The group-V tetrahedral cluster cations P(4)(+), As(4)(+), Sb(4)(+), and Bi(4)(+) are known to exhibit exceptionally strong Jahn-Teller (JT) effects of electrostatic origin in their (2)E ground states and (2)T(2) excited states. It has been predicted that there exist, in addition, JT couplings of relativistic origin (arising from the spin-orbit (SO) operator) in (2)E and (2)T(2) states of tetrahedral systems, which should become relevant for the heavier elements. In the present work, the JT and SO couplings in the group-V tetramer cations have been analyzed with ab initio relativistic electronic structure calculations. The vibronic line spectra and the band shapes of the photoelectron spectra were simulated with time-dependent quantum wave-packet methods. The results provide insight into the interplay of electrostatic and relativistic JT couplings and SO splittings in the complex photoelectron spectra of these systems.  相似文献   

7.
Heteronuclear transition‐metal–main‐group‐element carbonyl complexes of AsFe(CO)3?, SbFe(CO)3?, and BiFe(CO)3? were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass‐selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3?. Chemical bonding analyses on the whole series of AFe(CO)3? (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp–p) type of transition‐metal–main‐group‐element multiple bonding. The σ‐type three‐orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3? (A=As, Sb, Bi) complexes.  相似文献   

8.
The synthesis, spectroscopic characterization, and electrochemistry of As, Sb, and Bi corroles are reported. The investigated complexes are represented by [(OEC)AsV(CH3)]+ClO4- and (OEC)M where M = As(III), Sb(III), or Bi(III) and OEC is the trianion of octaethylcorrole. The products of each redox reaction are characterized by UV-vis and ESR spectroscopy. The first one-electron oxidations of (OEC)As and (OEC)Sb are metal-centered and result in the formation of [(OEC)AsIV]+ and [(OEC)SbIV]+. A second one-electron oxidations generates [(OEC)AsV]2+ and [(OEC.)SbIV]2+, the latter of which is slowly converted to a Sb(V) corrole, [(OEC)SbV]2+. The first one-electron oxidation of (OEC)Bi leads only to the Bi(III) pi-cation radical, but a second one-electron oxidation is proposed to give a Bi(IV) complex, [(OEC)Bi]2+. The first reduction of [(OEC)AsV(CH3)]+ClO4- is accompanied by loss of the sigma-bonded methyl ligand and formation of an As(III) complex.  相似文献   

9.
Heteronuclear transition‐metal–main‐group‐element carbonyl complexes of AsFe(CO)3, SbFe(CO)3, and BiFe(CO)3 were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass‐selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3. Chemical bonding analyses on the whole series of AFe(CO)3 (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp–p) type of transition‐metal–main‐group‐element multiple bonding. The σ‐type three‐orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3 (A=As, Sb, Bi) complexes.  相似文献   

10.
Pressure-induced phase transition in MgS is studied using a constant pressure ab initio molecular dynamics method, and a solid evidence of existence of its high-pressure phase is provided. As predicted by total energy calculations, MgS undergoes a structural phase transformation from the rocksalt structure to a CsCl-type structure under hydrostatic pressure. The transformation mechanism is characterized, and two intermediate phases having P4/nmm and P21/m symmetries for the rocksalt-to-CsCl-type phase transformation of MgS are proposed, which is different from the previously proposed mechanisms. We also study this phase transition using the total energy calculations. Our predicted transition parameters and bulk properties are in good agreement with the earlier first principle simulations.  相似文献   

11.
We have investigated the structural and electronic characteristics of tetrahedral, octahedral, and icosahedral fullerenes composed of group 15 elements phosphorus, arsenic, antimony, and bismuth. Systematic quantum chemical studies at the DFT and MP2 levels of theory were performed to obtain periodic trends for the structural principles, stabilities, and electronic properties of the elemental nanostructures. Calibration calculations for polyhedral clusters with up to 20 atoms showed the applied theoretical approaches to be in good agreement with high-level CCSD(T)/cc-pVTZ results. By studying fullerenes up to P888, As540, Sb620, and Bi620, we found their structures and stabilities to converge smoothly toward their experimental bulk counterparts. The diameters of the largest studied cages were 4.8, 3.7, 4.8, and 5.1?nm for the P, As, Sb, and Bi fullerenes, respectively. Comparisons with the experimentally known allotropes of the studied elements suggest the predicted polyhedral cages to be thermodynamically stable. All studied group 15 polyhedral fullerenes were found to be semiconducting, and density of states analysis illustrated clear periodic trends in their electronic structure. Relativistic effects become increasingly important when moving from P to Bi and taking the spin?Corbit effects into account by using a two-component procedure had a significant positive effect on the relative stability of bismuth clusters.  相似文献   

12.
A series of Group 15-containing homometallic (E(2)L(3), E = P, As, Sb, Bi) and heterometallic (AsSbL(3), AsBiL(3), PSbL(3)) supramolecular cryptands were prepared by the self-assembly of pnictogen halides with dithiolate ligand or by direct transmetalation from a heavier congener. Structural characterization by single crystal X-ray diffraction shows that the E-S bond distances and S-E-S bond angles are significantly affected by the identity of the pnictogen. (1)H NMR spectroscopy reveals that the homometallic cryptands are dynamic in solution: surprisingly one ligand "flips", perturbing the C(3) symmetry of the complex and giving a new asymmetric conformer. Density functional theory calculations were carried out on both the symmetric and the asymmetric conformations of the cryptands, and the energies were compared to those observed by NMR spectroscopy. It was found that the relative stability of the asymmetric cryptand to its symmetric conformer increases with increasing size of the Group 15 element. Finally, it is reported that if two metals are present during the self-assembly process, heterometallic cryptands form. These supramolecular cryptands are reminiscent of their organic analogues, but result from a self-assembly process rather than a stepwise synthesis. Surprisingly, they possess conformational isomerism and exhibit dynamic transmetalation in their reactivity which provides access to otherwise unattainable assemblies.  相似文献   

13.
A simple and very inexpensive in-situ nebulizer/hydride generator was used with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of As, Sb, Bi and Hg in water samples. The application of hydride generation ICP-MS alleviated the sensitivity problem of As, Sb, Bi and Hg determinations encountered when the conventional pneumatic nebulizer was used for sample introduction. The sample was introduced by flow injection to minimize the deposition of solids on the sampling orifice. The elements in the sample were reduced to the lower oxidation states with L-cysteine before being injected into the hydride generation system. This method has a detection limit of 0.003, 0.003, 0.017 and 0.17 ng ml−1 for As, Bi, Sb and Hg, respectively. This method was applied to determine As, Sb, Bi and Hg in a CASS-3 nearshore seawater reference sample, a SLRS-2 riverine water reference sample and a tap water collected from National Sun Yat-Sen University. The concentrations of the elements were determined by standard addition method. The precision was better than 20% for most of the determinations.  相似文献   

14.
The reactions of MCl3 with Li2[PhB(NtBu)2] in 1:1, 1:1.5, and 1:2 molar ratios in diethyl ether produced the monoboraamidinates ClM[PhB(NtBu)2] (1a, M = As; 1b, M = Sb; 1c, M = Bi), the novel 2:3 boraamidinate complexes [PhB(NtBu)2]M-micro-N(tBu)B(Ph)N(tBu)M[PhB(NtBu)2] (2b, M = Sb; 2c, M = Bi), and the bisboraamidinates LiM[PhB(NtBu)2]2 (3a, 3a.OEt2, M = As; 3b, M = Sb; 3c.OEt2, M = Bi), respectively. The 2:3 complexes 2b and 2c were also observed in the reactions carried out in a 1:2 molar ratio at room temperature. All complexes have been characterized by multinuclear NMR spectroscopy (1H, 7Li, 11B, and 13C) and by single-crystal X-ray structural determinations. The molecular units of the mono-boraamidinates 1a-c are isostructural, but their crystal packing is distinct as a result of stronger intermolecular close contacts going from 1a to 1c. In the novel 2:3 bam complexes 2b and 2c, each metal center is N,N'-chelated by a bam ligand and these two [M(bam)]+ units are bridged by the third [bam]2- ligand. The structures of the unsolvated bis-boraaminidate complexes 3a and 3b consist of [Li(bam)]- and [M(bam)]+ monomeric units linked by Li-N and M-N bonds to give a tricyclic structure. Solvation of the Li+ ion by diethyl ether results in a bicyclic structure composed of four-membered BN2As and six-membered BN3AsLi rings in 3a.OEt2. In contrast, the analogous bismuth complex 3c.OEt2 exhibits a tetracyclic structure. Variable-temperature NMR studies reveal that the nature of the fluxional behavior of 3a-c in solution is dependent on the group 15 center.  相似文献   

15.
利用Gaussian 98程序, 采用从头算和密度泛函理论方法, 对B6X-(X=N, P, As, Sb, Bi)杂硼原子簇进行了理论研究, 优化得到了其稳定平衡构型, 讨论了其振动光谱和稳定性等, 通过自然键轨道(NBO)、分子轨道(MO)和核独立化学位移(NICS)分析, 确定这些杂硼原子簇都有离域的π电子和σ电子成键轨道, 满足4n+2电子规则, 具有芳香性, 与纯B6- 或B62- 原子簇呈反芳香性不同.  相似文献   

16.
The syntheses and structures of complexes of the fifth period elements indium and antimony, and the sixth period element bismuth with the soft scorpionate ligand, hydrotris(methimazolyl)borate (Tm(Me)) are reported. A considerable variety of structural motifs were obtained by reaction of the main-group element halide and NaTm(Me). The indium(III) complexes took the form [In(kappa(3)-Tm(Me))(2)](+). This motif could not, however, be isolated for antimony(III), the dominant product being [Sb(kappa(3)-Tm(Me))(kappa(1)-Tm(Me))X] (X = Br, I). An iodo-bridged species [Sb(kappa(3)-Tm(Me))I(mu(2)-I)](2), analogous to a previously reported bismuth complex, was also isolated. Reaction of antimony(III) acetate with NaTm(Me) results in a remarkable species in which three different ligand binding modes are observed. In each antimony complex the influence of the nonbonded electron pair is observed in the structure. Bismuth halides form complexes analogous to those of antimony, with directional lone pairs, but in addition, reaction of Bi(NO(3))(3) with NaTm(Me) results in a complex with a regular S(6) coordination sphere and a nonstereochemically active lone pair. Comparisons are drawn with known Tm(Me) complexes of As, Sn, and Bi in which the stereochemical influence of the lone pairs is negligible and with Tm(Me) complexes of Te and Bi in which the lone pairs are stereochemically active. This study highlights the ability of Tm(Me) to coordinate in a variety of modes as dictated by the metal centre with no adverse effects on the stability of the complexes formed.  相似文献   

17.
Quantum chemical calculations at the MP2 and CCSD(T) levels of theory are reported for cations of the general type [A(XH2)3]+ with A = C, Si and X = N, P, As, Sb, Bi. Population analysis, methyl stabilization energies (MSEs), and structural criteria were used to predict the p(pi)-donor ability of and the pi-stabilization energy exerted by this series of pnicogens. All of the substituents XH2 considered in these studies invariably stabilize the triply substituted carbenium as well as the silicenium ions. The calculated data show that the intrinsic p(pi)-donation of the group 15 atoms follows the order N < P < As < Sb < Bi. However, the trend of the stabilization energies is fully reversed. The intrinsic stabilization energies of the planar carbenium ions decrease monotonically from 161.2 kcal mol(-1) for X = NH2 to 98.0 kcal mol(-1) for X = BiH2. The effective stabilization of the pnicogens in the equilibrium structures, which also includes the energy-demanding pyramidalization of the XH2 substituents, follows the same trend, although the absolute numbers are reduced to 145.6 kcalmol(-1) for X = NH2 and 53.2 kcalmol(-1) for X = BiH2. This seemingly contrasting behavior of increasing p(pi) charge donation and decreasing stabilization has already been found for other substituents. Previous studies have shown that carbenium ions substituted by chalcogens up to the fourth row also stabilize C+ less effectively with respect to heavier substituents. Of the ions investigated in this study, only the silicenium ions that are stabilized by pnicogens from the third to the sixth row of the periodic system yield increased stabilizing energies that follow the corresponding intrinsic p(pi)-donor abilities of the respective substituent.  相似文献   

18.
Geng L  Cheng WD  Zhang H  Lin CS  Zhang WL  Li YY  He ZZ 《Inorganic chemistry》2011,50(6):2378-2384
Two new quaternary sulfides, Ba(2)SbFeS(5) and Ba(2)BiFeS(5), were synthesized by using a conventional high-temperature solid-state reaction method in closed silica tubes at 1123 K. The two compounds both crystallize in the orthorhombic space group Pnma with a = 12.128(6) ?, b = 8.852(4) ?, c = 8.917(4) ?, and Z = 4 for Ba(2)SbFeS(5) and a = 12.121(5) ?, b = 8.913(4) ?, c = 8.837(4) ?, and Z = 4 for Ba(2)BiFeS(5). The crystal structure unit can be viewed as an infinite one-dimensional edge-shared MS(5) (M = Sb, Bi) tetragonal-pyramid chain with FeS(4) tetrahedra alternately arranged on two sides of the MS(5) polyhedral chain via edge-sharing (so the chain can also be written as (1)(∞)[MFeS(5)](4-)). Interestingly, the compounds have the structural type of a Ba(3)FeS(5) high-pressure phase considering one Ba(2+) is replaced by one Sb(3+)/Bi(3+), with Fe(4+) reduced to Fe(3+) for in order to maintain the electroneutrality of the system. As a result, the isolated iron ions in Ba(3)FeS(5) are bridged by intermediate MS polyhedra in Ba(2)MFeS(5) (M = Sb, Bi) compounds and form the (1)(∞)[MFeS(5)](4-) chain structure. This atom substitution of Ba(2+) by one Sb(3+)/Bi(3+) leads to a magnetic transition from paramagnetic Ba(3)FeS(5) to antiferromagnetic Ba(2)MFeS(5), resulting from an electron-exchange interaction of the iron ions between inter- or intrachains. Magnetic property measurements indicate that the two compounds are both antiferromagnetic materials with Ne?el temperatures of 13 and 35 K for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively. First-principles electronic structure calculations based on density functional theory show that the two compounds are both indirect-band semiconductors with band gaps of 0.93 and 1.22 eV for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively.  相似文献   

19.
The synthesis and characterisation is presented of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS=N(CH2CH2NSiMe2But)3, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; TrenTIPS=N(CH2CH2NSiPri3)3, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U−Sb and Th−Sb moieties are unprecedented examples of any kind of An−Sb molecular bond, and the U−Bi bond is the first two‐centre‐two‐electron (2c–2e) one. The Th−Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U−Bi complex is the heaviest 2c–2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An−An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U−Pn bonds degrade by homolytic bond cleavage, whereas the more redox‐robust thorium compounds engage in an acid–base/dehydrocoupling route.  相似文献   

20.
The synthesis and characterisation is presented of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS=N(CH2CH2NSiMe2But)3, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; TrenTIPS=N(CH2CH2NSiPri3)3, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U?Sb and Th?Sb moieties are unprecedented examples of any kind of An?Sb molecular bond, and the U?Bi bond is the first two‐centre‐two‐electron (2c–2e) one. The Th?Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U?Bi complex is the heaviest 2c–2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An?An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U?Pn bonds degrade by homolytic bond cleavage, whereas the more redox‐robust thorium compounds engage in an acid–base/dehydrocoupling route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号