首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laccase, a blue copper oxidase, in view of its moderate redox potential can oxidise only phenolic compounds by electron-transfer. However, in the presence of ABTS (2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) as a redox mediator, laccase reacts with the more difficult to oxidise non-phenolic substrates, such as benzyl alcohols. The role of ABTS in these mediated oxidations is investigated. Redox interaction with laccase could produce in situ two reactive intermediates from ABTS, namely ABTS++ or ABTS*+. These species have been independently generated by oxidation with Ce(iv) or Co(iii) salts, respectively, and their efficiency as monoelectronic oxidants tested in a kinetic study towards a series of non-phenolic substrates; a Marcus treatment is provided in the case of ABTS++. On these grounds, intervention of ABTS++ as a reactive intermediate in laccase-ABTS oxidations appears unlikely, because the experimental conditions under which ABTS++ is unambiguously generated, and survives long enough to serve as a diffusible mediator, are too harsh (2 M H2SO4 solution) and incompatible with the operation of the enzyme. Likewise, ABTS*+ seems an intermediate of limited importance in laccase-ABTS oxidations, because this weaker monoelectronic oxidant is unable to react directly with many of the non-phenolic substrates that laccase-ABTS can oxidise. To solve this paradox, it is alternatively suggested that degradation by-products of either ABTS++ or ABTS*+ are formed in situ by hydrolysis during the laccase-ABTS reactions, and may be responsible for the observed oxidation of non-phenolics.  相似文献   

2.
The chemoselectivity between S-oxidation and hydrogen atom transfer (HAT) from C−H bonds has been investigated in the oxidations of a series of aryl sulfides, alkyl aromatic compounds and benzylic alcohols promoted by the iron(IV)-oxo complex [(N4Py)FeIV(O)]2+ (N4Py: N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)-methylamine) either alone or in the presence of the N-hydroxyphthalimide (NHPI) mediator via kinetic and product studies. Kinetic analyses indicate a generally higher reactivity of [(N4Py)FeIV(O)]2+ for S-oxidation process while HAT is favored in the reactions promoted by phthalimide-N-oxyl radical (PINO) deriving from NHPI oxidation. Product analysis in intermolecular competitive oxidations confirms the kinetic results with sulfoxides obtained as major products in the oxidation promoted by [(N4Py)FeIV(O)]2+. Conversely, when NHPI is employed as a mediator, significant differences in terms of chemoselectivity are observed, and HAT-derived products are obtained in higher yields which translate into an inversion of selectivity in the case of the substrates containing activated C−H bonds like diphenylmethane, triphenylmethane and benzylic alcohols. A similar change of chemoselectivity is also observed in the oxidation of aromatic substrates containing both a sulfur atom and α to OH benzylic C−H bonds, with the sulfoxide product more abundant in the absence of NHPI and carbonyl products prevailing with the [(N4Py)FeIV(O)]2+/NHPI system.  相似文献   

3.
This paper describes a method based on square wave voltammetry to evaluate either the electron transfer or the hydrogen atom transfer of lipid soluble antioxidants such as dl ‐mix‐tocopherol, BHT, ethoxyquin and retynil acetate. The electron transfer (ET) capacity was evaluated by the peak current, peak potential and the area under the anodic wave, whereas the hydrogen atom transfer (HAT) capacity by the kinetic rate of the reaction between antioxidants and 2,2‐Azobis(2‐methylpropionamidine) dihydrochloride (AAPH). The results indicate that ethoxyquin and tocopherol have the highest ET and HAT capacity. However, HAT capacity of tocopherol, BHT and retinyl acetate depend on the concentration. The approach has the advantage to assess HAT and ET capacity of lipid soluble antioxidant in a single concerted protocol.  相似文献   

4.
A series of ring substituted 1-hydroxybenzotriazoles (6-X-HBTs) have been tested as mediators in the laccase-promoted oxidation of 4-methoxybenzyl alcohol, 3,4-dimethoxybenzyl alcohol, and the dimeric lignin model 1-(3,4-dimethoxyphenyl)-2-phenoxyethanol. The effect of the aryl substituents on the yields of oxidation products is remarkable. The catalytic mediation efficiency increases as the electron releasing (ER) properties of the substituent increases up to a maximum value for 6-CH3-HBT, which resulted a very efficient mediator. Both the oxidation of the 6-X-HBTs to the N-oxyl radicals (6-X-BTNO) by laccase and the hydrogen atom transfer (HAT) process from the benzylic C–H to the 6-X-BTNO contribute to the overall reactivity. The former process is favored by ER substituents that lower the mediator redox potentials. On the other hand, ER substituents decrease the 6-X-BTNO reactivity in the HAT process due to a decrease in the NO–H BDE value, as assessed in this study through a radical equilibration technique.  相似文献   

5.
Sodium nitrate was used as an effective redox mediator in the electrochemical oxidation of primary and secondary aromatic alcohols in biphase electrolysis at ambient temperature. The oxidation reactions were carried out in an undivided cell equipped with carbon anode and stainless steel cathode in which upper aqueous phase contained 0.83% sodium nitrate with minimum amount of HCl whereas, the lower organic phase consisted of aromatic alcohols in chloroform. A variety of aromatic alcohols were efficiently oxidized to aldehydes and ketones in good yields with maximum selectivity (>99%).  相似文献   

6.
The combination of RuCl2(PPh3)3 and TEMPO affords an efficient catalytic system for the aerobic oxidation of a variety of primary and secondary alcohols, giving the corresponding aldehydes and ketones, in >99% selectivity in all cases. The Ru/TEMPO system displayed a preference for primary vs secondary alcohols. Results from Hammett correlation studies (rho = -0.58) and the primary kinetic isotope effect (kH/kD = 5.1) for the catalytic aerobic benzyl alcohol oxidations are inconsistent with either an oxoruthenium (O=Ru) or an oxoammonium based mechanism. We postulate a hydridometal mechanism, involving a "RuH2(PPh3)3" species as the active catalyst. TEMPO acts as a hydrogen transfer mediator and is either regenerated by oxygen, under catalytic aerobic conditions, or converted to TEMPH under stoichiometric anaerobic conditions.  相似文献   

7.
A series of TEMPO (2,2′,6,6′-tetramethylpiperidinyl-1-oxy) derivatives were studied as mediators of laccase (from Trametes versicolor) in the oxidation of benzyl alcohol and 1-phenylethyl alcohol. TEMPO (1), 4-hydroxy-TEMPO (2) and 4-acetylamino-TEMPO (4) turned out to be the most active mediators for laccase. In addition, 4-acetylamino-TEMPO and 4-hydroxy-TEMPO were more active in the oxidation of 1-phenylethanol compared to TEMPO. For these mediators kinetic isotope effects in the range of 2.1-3.2 were observed for α-monodeutero-p-methylbenzyl alcohol oxidation. These values are consistent with a mechanism involving oxoammonium intermediacy. Competition experiments between benzyl alcohol and 1-phenylethanol showed that TEMPO and its derivatives react faster with primary alcohols than with secondary alcohols, also in line with the proposed mechanism.  相似文献   

8.
The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base, the ferryl group of (TPFPP)Fe(IV)=O, approaches thermoneutrality. The ET reaction displayed by 1 with gaseous N,N-dimethylaniline finds a counterpart in the ET reactivity of FeO+, reportedly a potent oxidant in the gas phase, and with the barrierless ET process for a model (P)*+ Fe(IV)=O species (where P is the porphine dianion) as found by theoretical calculations. Finally, the remarkable OAT reactivity of 1 with C6F5N(CH3)2 may hint to a mechanism along a route of diverse spin multiplicity.  相似文献   

9.
In this study, a magnetically reusable artificial metalloenzyme has been constructed by co-immobilization of palladium nanoparticles as a strong oxidizing catalyst and laccase as an oxygen-activating enzyme into the cavities of magnetic mesocellular foams silica (Pd-Laccase@MMCF). The combination of Pd-Laccase@MMCF and hydroquinone (HQ) act as electron-transfer mediator system and make stepwise electron transfer from substrate to molecular oxygen. This catalyst system was used for the aerobic (i) oxidation of alcohols to the corresponding carbonyl compounds and (ii) dehydrogenation of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in phosphate buffer (0.1 M, pH 4.5, 4 mL)/THF (4%, 1 mL) as solvent under mild conditions. The co-immobilization of both laccase and Pd onto high surface area mesoporous support, high catalytic activity and magnetically separable and reusable make the present catalyst system superior to other currently available electron-transfer mediator systems.  相似文献   

10.
Copper-dioxygen adducts are important biological oxidants. To gain a better understanding of the underlying chemistries of such species, we report on a series of Cu2II-O2 complexes, [{CuII(MePY2)R'}2(O2)](B(C6F5)4)2 (1R') (where (MePY2)R' is a 4-pyridyl substituted bis[2-(2-(4-R'-pyridyl)ethyl]methylamine; R' = H, MeO, Me2N; Zhang, C. X.; et al. J. Am. Chem. Soc. 2003, 125, 634-635), which readily oxidize exogenous substrates. In this study, we explore the mechanism by which 1R' facilitates the oxidative N-dealkylation of para-substituted N,N-dimethylanilines (R-DMA; R = MeO, Me, H, CN). In the case of 1H, the linear free-energy correlation plot (rho = -2.1) and intramolecular deuterium kinetic isotope effect (KIEintra, using p-R-(C6H4)-N(CH3)(CD3)) profile suggest that R-DMA oxidation occurs through rate-limiting electron transfer (ET). This mechanism was further enforced by comparison of KIEintra versus the intermolecular KIE (KIEinter, using p-R-(C6H4)-N(CH3)2 versus p-R-(C6H4)-N(CD3)2). It was found that KIEinter < KIEintra, suggesting an ET process. In the case of both 1MeO and 1Me2N, the KIEintra profile and linear free-energy correlation plots (rho = -0.49 and -0.99 for 1Me2N and 1MeO with especially poor fitting for the latter) are inconclusive in distinguishing between a rate-limiting ET or hydrogen atom transfer (HAT) pathway. Comparisons of KIEinter versus KIEintra demonstrate a switch in mechanism from ET to HAT for 1Me2N and 1MeO oxidation of R-DMA as R-DMA is made less reducing. In the case of 1Me2N, MeO-DMA and Me-DMA are oxidized via a rate-limiting ET (KIEinter < KIEintra), while H-DMA and CN-DMA are oxidized through a HAT pathway (KIEinter approximately KIEintra). For 1MeO, oxidation occurs through an ET pathway for MeO-, Me-, and H-DMA (KIEinter < KIEintra), while CN-DMA is oxidized though a HAT process (KIEinter approximately KIEintra). Copper complex attributes, which may contribute to the mechanistic observations, are suggested.  相似文献   

11.
Substituted benzyl alcohol was oxidized enzymatically with a laccase-mediator system and the products were investigated as a function of time by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (nanoESI-FTICRMS). With Trametes versicolor laccase (TVL), the mediator, 2,2',6,6'-tetramethylpiperidine-N-oxyl radical (TEMPO), undergoes oxidation and forms oxoammonium ion. Oxidized TEMPO oxidizes the alcohol and is simultaneously reduced to the N-OH form. The laccase then restores TEMPO back to the normal radical form and the oxidation cycle starts again. The role of TEMPO and the structures of its oxidized and reduced forms in the enzymatic oxidation process were clarified in collision-induced dissociation experiments and gas-phase hydrogen/deuterium (H/D) exchange reactions. The amounts of enzyme and mediator were significant for product formation: with greater amounts overoxidation products, the corresponding benzoic acid and benzonitrile were formed. Smaller amounts of laccase and mediator generated benzaldehyde in high yield. The reaction pathway for benzonitrile formation is discussed and it is suggested to start from benzaldehyde and the ammonia in the ammonium acetate buffer.  相似文献   

12.
The oxidation of substituted benzyl alcohols by bis(2,2′-bipyridyl) copper(II) permanganate (BBCP), leading to the corresponding benzaldehydes is first-order with respect to BBCP. Michaelis-Menten type kinetics were observed with respect to the alcohols. The oxidation of a,a-dideuteriobenzyl alcohol indicated the presence of a substantial kinetic isotope effect. The rates of oxidation of meta- and para-substituted benzyl alcohols were correlated in terms of Charton's triparametric LDR equation whereas ortho- substituted benzyl alcohols were correlated with a four parametric LDRS equation. The results of correlation analyses point to an electron-deficient reaction center in the transition state. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 9–16, 1997.  相似文献   

13.
Catechin derivatives were oxidized in air in the presence of the Trametes villosa laccase/1-hydroxybenzotriazole (HBT) system in buffered water/1,4-dioxane as reaction medium. The oxidation products, flavan-3,4-diols and the corresponding C-4 ketones, are bioactive compounds and useful intermediates for the hemisynthesis of proanthocyanidins, plant polyphenols which provide beneficial health properties for humans. Determinations of oxidation potentials excluded that catechin derivatives could be directly oxidized by laccase Cu(II), while it resulted in the H-abstraction from benzylic positions being promptly promoted by the enzyme in the presence of the mediator HBT, the parent species producing in situ the reactive intermediate benzotriazole-N-oxyl (BTNO) radical. A remarkable and unexpected result for the laccase/HBT oxidative system has been the chemoselective insertion of the oxygen atom into the C-4-H bond of catechin derivatives. Mechanistic aspects of the oxidation reaction have been investigated in detail for the first time in order to corroborate these results. Since the collected experimental findings could not alone provide information useful to clarify the origin of the observed chemoselectivity, these data were expressly supplemented with information derived by suitable molecular modeling investigations. The integrated evaluation of the dissociation energies of the C-H bonds calculated both by semiempirical and DFT methods and the differential activation energies of the process estimated by a molecular modeling approach suggested that the observed selective oxidation at the C-4 carbon has a kinetic origin.  相似文献   

14.
A series of aryl-substituted N-hydroxyphthalimides (X-NHPIs) containing either electron-withdrawing groups (4-CH(3)OCO, 3-F) or electron-donating groups (4-CH(3), 4-CH(3)O, 3-CH(3)O, 3,6-(CH(3)O)(2)) have been used as catalysts in the aerobic oxidation of primary and secondary benzylic alcohols. The selective formation of aromatic aldehydes was observed in the oxidation of primary alcohols; aromatic ketones were the exclusive products in the oxidation of secondary alcohols. O-H bond dissociation enthalpies (BDEs) of X-NHPIs have been determined by using the EPR radical equilibration technique. BDEs increase with increasing the electron-withdrawing properties of the aryl substituent. Kinetic isotope effect studies and the increase of the substrate oxidation rate by increasing the electron-withdrawing power of the NHPI aryl substituent indicate a rate-determining benzylic hydrogen atom transfer (HAT) from the alcohol to the aryl-substituted phthalimide-N-oxyl radical (X-PINO). Besides enthalpic effects, polar effects also play a role in the HAT process, as shown by the negative rho values of the Hammett correlation with sigma(+) and by the decrease of the rho values (from -0.54 to -0.70) by increasing the electron-withdrawing properties of the NHPI aryl substituent. The relative reactivity of 3-CH(3)O-C(6)H(4)CH(2)OH and 3,4-(CH(3)O)(2)-C(6)H(3)CH(2)OH, which is higher than expected on the basis of the sigma(+) values, the small values of relative reactivity of primary vs secondary benzylic alcohols, and the decrease of the rho values by increasing the electron-withdrawing properties of the NHPI aryl substituent, suggest that the HAT process takes place inside a charge-transfer (CT) complex formed by the X-PINO and the benzylic alcohol.  相似文献   

15.
Water was found to be a convenient reaction medium for functionalization of substituted anisoles using iodine in the presence of Selectfluor F-TEDA-BF(4) or hydrogen peroxide as mediators and oxidizers. Two types of functionalization were observed: iodination or oxidation. In the iodination process, two reaction routes were established. In the case of the first route, a high iodine atom economy was achieved for selective and effective iodo functionalization with a stoichiometric ratio of substrate/iodine/(mediator/oxidizer) = 2:1:1.2. An electrophilic iodination reaction process was suggested for this route, with the oxidizer converting the liberated iodide anion to iodine. For the second reaction route, a stoichiometric ratio of substrate/iodine/(mediator/oxidizer) = 1:1:1 and a lower iodine atom economy were observed; in this case, ion radical formation in the first step of the reaction was suggested. Iodine was found to be an effective catalyst for the oxidation of a hydroxy benzyl functional group to benzaldehyde using F-TEDA-BF(4). Water is an effective medium for functionalization of anisole, p-methoxy benzyl alcohol, 1-(4-methoxyphenyl)ethanone, o-dimethoxy benzene, m-dimethoxy benzene, and p-dimethoxy benzene, whereas F-TEDA-BF(4) as a mediator/oxidizer could be replaced by hydrogen peroxide in the case of the functionalization of 1-(4-methoxyphenyl)ethanone, o-dimethoxy benzene, m-dimethoxy benzene, and p-dimethoxy benzene. Water changes the type of transformation of p-methoxy benzyl alcohol.  相似文献   

16.
Nickel zirconium phosphate nanoparticles were found to function as efficient catalysts for the selective oxidation of a wide range of alcohols to their corresponding ketones and aldehydes using H2O2 as an oxidizing agent and without any organic solvents, phase transfer catalysts, or additives. The steric and electronic properties of various substrates had significant influence on the reaction conditions required to achieve acetylation. The results showed that this method can be applied for the chemoselective oxidation of benzyl alcohols in the presence of aliphatic alcohols. The catalyst used in the current study was characterized by ICP-OES, XRD, NH3-TPD, Py-FTIR, N2 adsorption-desorption, SEM and TEM. These analyses revealed that the interlayer distance in the catalyst increased from 0.75 to 0.98 nm when Ni2+ was intercalated between the layers, whereas the crystallinity of the material was reduced. The nanocatalyst could also be recovered and reused at least seven times without any discernible decrease in its catalytic activity. This new method for the oxidation of alcohols has several key advantages, including mild and environmentally friendly reaction conditions, short reaction time, excellent yields and a facile work-up.  相似文献   

17.
The rates of reaction of 1,1-diphenyl-2-picrylhydrazyl (dpph*) radicals with curcumin (CU, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), dehydrozingerone (DHZ, "half-curcumin"), and isoeugenol (IE) have been measured in methanol and ethanol and in two non-hydroxylic solvents, dioxane and ethyl acetate, which have about the same hydrogen-bond-accepting abilities as the alcohols. The reactions of all three substrates are orders of magnitude faster in the alcohols, but these high rates can be suppressed to values essentially equal to those in the two non-hydroxylic solvents by the addition of acetic acid. The fast reactions in alcohols are attributed to the reaction of dpph* with the CU, DHZ, and IE anions (see J. Org. Chem. 2003, 68, 3433), a process which we herein name sequential proton loss electron transfer (SPLET). The most acidic group in CU is the central keto-enol moiety. Following CU's ionization to a monoanion, ET from the [-(O)CCHC(O)-](-) moiety to dpph* yields the neutral [-(O)CCHC(O)-]* radical moiety which will be strongly electron withdrawing. Consequently, a phenolic proton is quickly lost into the alcohol solvent. The phenoxide anion so formed undergoes charge migration to produce a neutral phenoxyl radical and the keto-enol anion, i.e., the same product as would be formed by a hydrogen atom transfer (HAT) from the phenolic group of the CU monoanion. The SPLET process cannot occur in a nonionizing solvent. The controversy as to whether the central keto-enol moiety or the peripheral phenolic hydroxyl groups of CU are involved in its radical trapping (antioxidant) activity is therefore resolved. In ionizing solvents, electron-deficient radicals will react with CU by a rapid SPLET process but in nonionizing solvents, or in the presence of acid, they will react by a slower HAT process involving one of the phenolic hydroxyl groups.  相似文献   

18.
Nickel zirconium phosphate nanoparticles were found to function as efficient catalysts for the selec-tive oxidation of a wide range of alcohols to their corresponding ketones and aldehydes using H2O2 as an oxidizing agent and without any organic solvents, phase transfer catalysts, or additives. The steric and electronic properties of various substrates had significant influence on the reaction con-ditions required to achieve acetylation. The results showed that this method can be applied for the chemoselective oxidation of benzyl alcohols in the presence of aliphatic alcohols. The catalyst used in the current study was characterized by ICP-OES, XRD, NH3-TPD, Py-FTIR, N2 adsorp-tion-desorption, SEM and TEM. These analyses revealed that the interlayer distance in the catalyst increased from 0.75 to 0.98 nm when Ni2+ was intercalated between the layers, whereas the crystal-linity of the material was reduced. The nanocatalyst could also be recovered and reused at least seven times without any discernible decrease in its catalytic activity. This new method for the oxi-dation of alcohols has several key advantages, including mild and environmentally friendly reaction conditions, short reaction time, excellent yields and a facile work-up.  相似文献   

19.
Zinc zirconium phosphate (ZPZn) nanoparticles have been used as an efficient catalyst for the selective oxidation of a wide range of alcohols to their corresponding ketones or aldehydes using H2O2 as an oxidizing agent without any organic solvent, phase transfer catalyst, or additive. The steric factors associated with the substrates had a significant influence on the reaction conditions. The results showed that this method can be applied for chemoselective oxidation of benzyl alcohols in the presence of aliphatic alcohols. The catalyst used in the current study was characterized by ICP‐OES, XRD, N2 adsorption‐desorption, NH3‐TPD, Py‐FTIR, SEM, and TEM. These analyses revealed that the interlayer distance in the catalyst increased from 7.5 to 8.7 Å when Zn2+ was intercalated between the layers, whereas the crystallinity of the material was reduced. This nanocatalyst could also be recovered and reused at least seven times without any discernible decrease in its catalytic activity. This new method for the oxidation of alcohols has several key advantages, including mild and environmentally friendly reaction conditions, excellent yields and a facile work‐up.  相似文献   

20.
In this study, decolorization of dyestuffs, such as Reactive Red 198, Rem Blue RR, Dylon Navy 17, Rem Red RR, and Rem Yellow RR was studied using laccase and laccase-mediated system. The laccases are known to have an important potential for remediation of pollutants. Among these dyestuffs, decolorization of Rem Blue RR and Dylon Navy 17 was performed with crude laccase under optimized conditions. Vanillin was selected as laccase mediator after screening six different compounds with Rem Yellow RR, Reactive Red 198, and Rem Red RR as substrates. However, Rem Yellow RR was not decolorized by either laccase or laccase-mediated system. It is observed that the culture supernatant contained high laccase activity after treatment with catalase that was responsible for the decolorization. Besides, culture supernatant with high laccase activity as enzyme source was treated with catalase; in this way, the hypothesis that laccase was the enzyme responsible for decolorization was supported. The Rem Blue RR was decolorized with 64.84% under the optimum conditions and Dylon Navy 17 with 75.43% with crude laccase. However, using the laccase and vanillin, the decolorization of Reactive Red 198 and Rem Red RR was found to be 62% and 68%, respectively. Our study demonstrated that the decolorization abilities of laccase and/or laccase mediator systems were based on the types of mediator, the dye structure, and the standard experimental conditions. Also, the electrochemical behaviors of some samples were studied. The redox potentials of these samples were determined using cyclic voltammetry on glassy carbon electrode in phosphate buffer (pH 6) solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号