首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acidity constants of the 2-fold protonated (1H-benzimidazol-2-yl-methyl)phosphonate, H2(Bimp)(+/-), are given, and the stability constants of the M(H;Bimp)+ and M(Bimp) complexes with the metal ions M2+ = Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Cu2+, Zn2+, or Cd2+ have been determined by potentiometric pH titrations in aqueous solution at I = 0.1 M (NaNO3) and 25 degrees C. Application of previously determined straight-line plots of log KM(M(Bi-R)) versus pKH(H(Bi-R)) for benzimidazole-type ligands, Bi-R, where R represents a residue which does not affect metal ion binding, proves that the primary binding site in the M(H;Bimp)+ complexes is (mostly) N3 and that the proton is located at the phosphonate group; outersphere interactions seem to be important, and the degree of chelate formation is above 60% for all metal ion complexes studied, except for Zn(H;Bimp)+. A similar evaluation based on log KM(M(R-PO3)) versus pKH(H(R-PO3)) straight-line plots for simple phosph(on)ate ligands, R-, where R represents a residue which cannot participate in the coordination process, reveals that the primary binding site in the M(Bimp) complexes is (mostly) the phosphonate group with all metal ions studied. In this case, the formation degree of the chelates varies more widely in dependence on the kind of metal ion involved, i.e., from 17 +/- 11% to nearly 100% for Ba(Bimp) and Cu(Bimp), respectively. For all the M(H;Bimp)+ and M(Bimp) systems, the intramolecular equilibria between the isomeric complexes are evaluated in a quantitative manner. The fact that for Bimp2- the metal ion affinity of the two binding sites, N3 and PO3(2-), can be calculated independently, i.e., the corresponding micro stability constants become known, allows us to present for the first time a method for the quantification of the chelate effect solely based on comparisons of stability constants which carry the same dimensions. This effect is often ill defined in textbooks because equilibrium constants of different dimensions are compared, which is avoided in the present case. For the M(Bimp) complexes, it is shown that the chelate effect is close to zero for Ba(Bimp) whereas for Cu(Bimp) it amounts to about four log units. This method is also applicable to other chelating systems. Finally, considering that benzimidazole as well as phosphonate derivatives are employed as therapeutic agents, the potential biological properties of Bimp, especially regarding nucleic acid polymerases, are briefly discussed.  相似文献   

2.
The first acidity constant of fully protonated xanthosine 5'-monophosphate, that is, of H3(XMP)+, was estimated by means of a micro acidity constant scheme and the following three deprotonations of the H2(XMP)+/- (pKa=0.97), H(XMP)- (5.30), and XMP2- (6.45) species were determined by potentiometric pH titrations; further deprotonation of (XMP-H)3- is possible only with pKa>12. The most important results are that the xanthine residue is deprotonated before the P(O)2(OH)- group loses its final proton; that is, twofold negatively charged XMP carries one negative charge in the pyrimidine ring and one at the phosphate group. Micro acidity constant evaluations reveal that this latter mentioned species occurs with a formation degree of 88 %, whereas its tautomer with a neutral xanthine moiety and a PO3(2-) group is formed only to 12 %; this distinguishes XMP from its related nucleoside 5'-monophosphates, like guanosine 5'-monophosphate. At the physiological pH of about 7.5 mainly (XMP-H)3- exists. The question, which of the purine sites, (N1)H or (N3)H, is deprotonated in this species cannot be answered unequivocally, though it appears that the (N3)H site is more acidic. By application of several methylated xanthine species intrinsic micro acidity constants are calculated and it is shown that, for example, for 7-methylxanthine the N1-deprotonated tautomer occurs with a formation degree of about 5 %; a small but significant amount that, as is discussed, may possibly be enhanced by metal ion coordination to N7, which is known to occur preferably to this site.  相似文献   

3.
The synthesis of (Dien)Pt(PMEA-N1), where Dien = diethylenetriamine and PMEA2- = dianion of 9-[2-(phosphonomethoxy)ethyl]adenine, is described. The acidity constants of the threefold protonated H3[(Dien)Pt(PMEA-N1)]3+ complex were determined and in part estimated (UV spectrophotometry and potentiometric pH titration): The release of the proton from the (N7)H+ site in H4[(Dien)Pt(PMEA-N1)]3+ occurs with a rather low pKa (= 0.52+/-0.10). The release of the proton from the -P(O)2(OH) group (pKa = 6.69+/-0.03) in H[(Dien)Pt(PMEA-N1)]+ is only slightly affected by the N1-coordinated (Dien)Pt2+ unit. Comparison with the acidic properties of the H[(Dien)Pt(PMEA-N7)]+ species provides evidence that in the (Dien)Pt(PMEA-N7) complex in aqueous solution an intramolecular, outer-sphere macrochelate is formed through hydrogen bonds between the -PO3(2-) residue of PMEA2- and a PtII-coordinated (Dien)NH2 group; its formation degree amounts to about 40%. The stability constants of the M[(Dien)Pt(PMEA-N1)]2+ complexes with M2+ = Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were measured by potentiometric pH titrations in aqueous solution at 25 degrees C and I = 0.1 M (NaNO3). Application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3)H for simple phosph(on)ate ligands. R-PO3(2-), where R represents a non-inhibiting residue without an affinity for metal ions, proves that the primary binding site of (Dien)Pt(PMEA-N1) is the phosphonate group with all metal ions studied; in fact, Mg2+, Ca2+ and Ni2+ coordinate (within the error limits) only to this site. For the Cu[(Dien)Pt(PMEA-N1)]2+ and Zn[(Dien)Pt(PMEA-N1)]2- systems also the formation of five-membered chelates involving the ether oxygen of the -CH2-O-CH2-PO3(2-) residue could be detected; the formation degrees are about 60% and 30%, respectively. The metal-ion-binding properties of the isomeric (Dien)Pt(PMEA-N7) species studied previously differ in so far that the resulting M[(Dien)Pt(PMEA-N7)]2+ complexes are somewhat less stable, but again Cu2+ and Zn2+ also form with this ligand comparable amounts of the mentioned five-membered chelates. In contrast, both M[(Dien)Pt(PMEA-N1/N7)]2+ complexes differ from the parent M(PMEA) complexes considerably; in the latter instance the formation of the five-membered chelates is of significance for all divalent metal ions studied. The observation that divalent metal-ion binding to the phosphonate group of (Dien)Pt(PMEA-N1) and (Dien)Pt(PMEA-N7) is only moderately inhibited (about 0.2-0.4 log units) by the twofold positively charged (Dien)Pt2+ unit at the adenine residue allows the general conclusion, considering that PMEA is a nucleotide analogue, that this is also true for nucleotides and that consequently participation of, for example, two metal ions in an enzymatic process involving nucleotides is not seriously hampered by charge repulsion.  相似文献   

4.
The dinucleotide d(pGpG) is an often employed DNA model to study various kinds of interactions between DNA and metal ions, but its acid-base properties were not yet described in detail. In this study the six deprotonation reactions of H4[d(pGpG)]+ are quantified. The acidity constants for the release of the first proton from the terminal P(O)(OH)2 group (pKa = 0.65) and for one of the (N7)H+ sites (pKa = 2.4) are estimated. The acidity constants of the remaining four deprotonation reactions were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3): The pKa values for the deprotonations of the second (N7)H+, the P(O)2(OH)-, and the two (N1)H sites are 2.98, 6.56, 9.54 and 10.11, respectively. Based on these results we show how to estimate acidity constants for related systems that have not been studied, e.g. pGpG, which is involved in the initiation step of a rotavirus RNA polymerase. The relevance of our results for nucleic acids in general is briefly indicated.  相似文献   

5.
By the use of [1H,15N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy and electrochemical methods we have determined the hydrolysis profile of the bifunctional dinuclear platinum complex [[trans-PtCl(15NH3)2]2(mu-15NH2(CH2)(6)15NH2)]2+ (1,1/t,t (n = 6), 15N-1), the prototype of a novel class of potential antitumor complexes. Reported are estimates for the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pKa1 approximately pKa2 approximately pKa3). The equilibrium constants determined by NMR at 25 and 37 degrees C (I = 0.1 M) were similar, pK1 approximately pK2 = 3.9 +/- 0.2, and from a chloride release experiment at 37 degrees C the values were found to be pK1 = 4.11 +/- 0.05 and pK2 = 4.2 +/- 0.5. The forward and reverse rate constants for aquation determined from this chloride release experiment were k1 = (8.5 +/- 0.3) x 10(-5) s-1 and k-1 = 0.91 +/- 0.06 M-1 s-1, where the model assumed that all the liberated chloride came from 1. When the second aquation step was also taken into account, the rate constants were k1 = (7.9 +/- 0.2) x 10(-5) s-1, k-1 = 1.18 +/- 0.06 M-1 s-1, k2 = (10.6 +/- 3.0) x 10(-4) s-1, k-2 = 1.5 +/- 0.6 M-1 s-1. The rate constants compare favorably with other complexes with the [PtCl(am(m)ine)3]+ moiety and indicate that the equilibrium of all these species favors the chloro form. A pKa value of 5.62 was determined for the diaquated species [[trans-Pt(15NH3)2(H2O)]2(mu-15NH2(CH2)(6)15NH2)]4+ (3) using [1H,15N] HSQC NMR spectroscopy. The speciation profile of 1 and its hydrolysis products under physiological conditions is explored.  相似文献   

6.
Short and efficient syntheses of functionalized (pyrrolidin-2-yl)phosphonate and (5-oxopyrrolidin-2-yl)phosphonate have been developed. The synthetic strategy involved the diastereospecific 1,3-dipolar cycloaddition of N-benzyl-C-(diethoxyphosphoryl)nitrone to cis-1,4-dihydroxybut-2-ene and dimethyl maleate, respectively. O,O-Diethyl 3-carbamoyl-4-hydroxy(5-oxopyrrolidin-2-yl)phosphonate was obtained from O,O-diethyl 2-benzyl-4,5-dimethoxycarbonyl(isoxazolidin-3-yl)phosphonate by hydrogenation and subsequent treatment with ammonia, whereas transformation of O,O-diethyl 2-benzyl-4,5-dihydroxymethyl(isoxazolidin-3-yl)phosphonate into O,O-diethyl 3-aminomethyl-4-hydroxy(pyrrolidin-2-yl)phosphonate was accomplished by mesylation followed by hydrogenolysis to undergo intramolecular cyclization and the introduction of amino group via ammonolysis. Stereochemistry of the isoxazolidine cycloadducts, as well as the final functionalized (pyrrolidin-2-yl)- and (5-oxopyrrolidin-2-yl)phosphonates were established based on conformational analyses using vicinal H–H, H–P, and C–P couplings and supported by the observed diagnostic NOESY correlation signals.  相似文献   

7.
The stability constants of the 1:1 complexes formed between Pb2+ and the nucleosides (Ns), adenosine and guanosine, as well as between the nucleotides (NMP2-), AMP2-, IMP2-, and GMP2-, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Based on previously established log KPb(R-PO3)Pb versus pKH(R-PO3)H straight-line plots (R-PO3(2-) = simple phosphate monoester or phosphonate ligands where R is a noninteracting site), it is shown that the Pb(IMP) and Pb(GMP) complexes are more stable than is expected on the basis of the basicity of the phosphate group of IMP2- and GMP2-. This means that macrochelates are formed, where the phosphate-coordinated Pb2+ also interacts with N7 of the nucleobase residue. In contrast, the stability of the Pb(AMP) complex is governed by the basicity of the AMP2- phosphate group. These results agree with the observations made for the Pb(Ns)2+ complexes: Pb(adenosine)2+ is very unstable in contrast to Pb(guanosine)2+, the stability of which is very similar to the one of Pb(cytidine)2+ studied previously. The stability constants of the Pb(Ns)2+ complexes also allowed an evaluation of the structure in solution of the monoprotonated Pb(H;NMP)+ complexes, the stabilities of which were also determined. We were able to show that the proton is located at the phosphate group and Pb2+ at the N7/(C6)O site of H(GMP)-; in the case of H(AMP)- Pb2+ is probably about equally distributed between the adenine residue and the monoprotonated phosphate group. On the basis of the stability constants of these complexes and their structures in solution, it is possible to provide a series which reflects the decreasing affinity for Pb2+ of nucleobase residues in single-stranded nucleic acids: guanine approximately equal to cytosine > (hypoxanthine) > adenine > uracil approximately equal to thymine. The Pb2+ affinity of the phosphodiester linkage, -PO3(-)-, is similar to the one of the adenine residue, but is expected to be more significant due to its larger abundance. The relevance of these results for lead-activated ribozymes is briefly discussed.  相似文献   

8.
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+ [Arm = 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen)], and the di- or trianion of xanthosine 5'-monophosphoric acid [= XMP(2-) or (XMP - H)(3-)] were determined by potentiometric pH titration in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Those for the monoanion, i.e., the Cu(Arm)(H;XMP)+ complexes, could only be estimated; for these species it is concluded that the metal ion is overwhelmingly bound at N7 and the proton resides at the phosphate group. Similarly, in the Cu(Arm)(XMP)+/- [= Cu(Arm)(X - H.MP.H)+/-] complexes Cu(Arm)2+ is also at N7 but the xanthine residue has lost a proton whereas the phosphate group still carries one, i.e., stacking plays, if at all, only a very minor role, yet, the N7-bound Cu(Arm)2+ appears to form an outer-sphere macrochelate with P(O)2(OH)-, its formation degree being about 60%. All this is different in the Cu(Arm)(XMP - H)- complexes, which are formed by the (XMP - H)(3-) species, that occur at the physiological pH of 7.5 and for which previously evidence has been provided that in a tautomeric equilibrium the xanthine moiety loses a proton either from (N1)H or (N3)H. In Cu(Arm)(XMP - H)- the phosphate group is the primary binding site for Cu(Arm)2+ and the observed increased complex stability is mainly due to intramolecular stack (st) formation between the aromatic-ring systems of Phen or Bpy and the monodeprotonated xanthine residue of (XMP - H)(3-); e.g., the stacked Cu(Phen)(XMP - H) isomer occurs with approximately 76%. Regarding biological systems the most important result is that at physiological pH the xanthine moiety has lost a proton from the (N1)H/(N3)H sites forming (XMP - H)(3-) and that its anionic xanthinate residue is able to undergo aromatic-ring stacking.  相似文献   

9.
Adenosine (Ado) can accept three protons, at N1, N3, and N7, to give H(3) (Ado)(3+) , and thus has three macro acidity constants. Unfortunately, these constants do not reflect the real basicity of the N sites due to internal repulsions, for example, between (N1)H(+) and (N7)H(+). However, these macroconstants are still needed for the evaluations and the first two are taken from our own earlier work, that is, pK(H)(H(3))((Ado)) = -4.02 and pK(H)(H(2))((Ado)) = -1.53; the third one was re-measured as pK(H)(H)((Ado)) = 3.64 ± 0.02 (25 °C; I=0.5 M, NaNO(3)), because it is the main basis for evaluating the intrinsic basicities of N7 and N3. Previously, contradicting results had been published for the micro acidity constant of the (N7)H(+) site; this constant has now been determined in an unequivocal manner, and that of the (N3)H(+) site was obtained for the first time. The micro acidity constants, which describe the release of a proton from an (N)H(+) site under conditions for which the other nitrogen atoms are free and do not carry a proton, decrease in the order pk(N7-N1)(N7(Ado)N1·H)) = 3.63 ± 0.02 > pk(N7-N1)(H·N7(Ado)N1) = 2.15 ± 0.15 > pk(N3-N1,N7)(H·N3(Ado)N1,N7) =1.5 ± 0.3, reflecting the decreasing basicity of the various nitrogen atoms, that is, N1>N7>N3. Application of the above-mentioned microconstants allows one to calculate the percentages (formation degrees) of the tautomers formed for monoprotonated adenosine, H(Ado)(+) , in aqueous solution; the results are 96.1, 3.2, and 0.7% for N7(Ado)N1·H(+), (+)H·N7(Ado)N1, and (+)H·N3(Ado)N1,N7, respectively. These results are in excellent agreement with theoretical DFT calculations. Evidently, H(Ado)(+) exists to the largest part as N7(Ado)N1·H(+) having the proton located at N1; the two other tautomers are minority species, but they still form. These results are not only meaningful for adenosine itself, but are also of relevance for nucleic acids and adenine nucleotides, as they help to understand their metal ion-binding properties; these aspects are briefly discussed.  相似文献   

10.
The importance assigned to chelating agents in diverse areas has impelled studies concerning their development as related to metal ions representing a biological concern. The synthesis of di-isopropyliminodiacetoamide (D) is presented in this work. The acidity constant obtained for D was pKa = 5.79 +/- 0.04 with the aid of program SUPERQUAD. The equilibrium constants for D with Cu(II) were obtained with the aid of program SQUAD for CuD2+ and CuD2(2)+ species giving log beta1 = 4.795 +/- 0.002 and log beta2 = 8.374 +/- 0.004, respectively.  相似文献   

11.
Synthetic, structural, spectroscopic, and kinetic studies have been carried out on the Pd(II) complexes of new 2N1O-donor ligands containing a pendent indole, 3-(N-2-pyridylmethyl-N-2-hydroxy-5-methoxybenzylamino)ethylindole (HMeO-iepp), 3-(N-2-pyridylmethyl-N-2-hydroxy-5-nitrobenzylamino)ethylindole (HNO2-iepp), and (N-2-pyridylmethyl-3-indolylethylamino)acetic acid (Hiepc) (H denotes a dissociable proton). [Pd(MeO-iepp)Cl] (2), [Pd(NO2-iepp)Cl] (3), and [Pd(iepc)Cl] (4) were prepared and revealed by X-ray analysis to have a pyridine nitrogen, an amine nitrogen, a phenolate or carboxylate oxygen, and a chloride ion in the coordination plane. UV absorption and 1H NMR spectral changes indicated that all the complexes could be converted to the indole-binding complexes where the O donor was replaced by the indole C2 atom by cyclopalladation in DMSO or DMF in the temperature range of 40-60 degrees C. Formation of the indole-binding complex species obeyed the first-order kinetics, from which the activation parameters were estimated. The formation rate was dependent on the properties of the O-donor group, a lower pKa value of its conjugate acid causing faster conversion to the indole-binding species in the order 2 (methoxyphenolate) < 3 (nitrophenolate) < 4 (carboxylate). On the other hand, the ratio of the indole-binding complex to the O-donor complex as a result of the conversion was greater for the complexes with a higher pKa value of the ligand OH group, the order being 2 > 3 > 4.  相似文献   

12.
The effect of Pt(2+) coordination, in particular of (dien)Pt(2+) or cis-(NH(3))(2)Pt(2+), on the acid-base properties of the purine ligands 9-ethylguanine (9EtG), 9-methylhypoxanthine (9MeHx), inosine (Ino), 9-methyladenine (9MeA), and N6',N6',N9-trimethyladenine (TriMeA) is quantitatively evaluated. The corresponding acidity constants of the complexes are calculated by curve-fitting procedures using previously published (1)H NMR shift data which had been measured in aqueous solution (D(2)O) in dependence on pH (pD). Comparison of the pK(a) values of the ligands with those of the Pt(2+) complexes reveals the expected behavior for the (N7)-platinated complexes; i.e., the (N1)H(0/+) sites are acidified due to charge repulsion. However, Pt(2+) coordination at (N1)(-)(/0) sites leads to an (already previously observed) apparent increase in the basicity of the N7 sites for the guanine, hypoxanthine, and adenine residues; this is also the case if Pt(2+) is bound to N3. Coordination of Pt(2+) to both the (N1)(-) and N7 sites of 9EtG results apparently in an enhanced basicity of N3 if compared with the release of the proton from the (N3)H(+) site in H(2)(9EtG)(2+). For the former cases in aqueous solution (H(2)O) it is now proven for a comprehensive set of data (seven examples), by taking into account the intrinsic basicities of the various N7 sites via micro acidity constants, that the acidifications are reciprocal and identical. This means Pt(2+) coordinated to (N1)(-)(/0) sites in guanine, hypoxanthine, or adenine residues acidifies the (N7)H(+) unit to the same extent as (N7)-coordinated Pt(2+) acidifies the (N1)H(0/+) site. In other words, the apparently increased basicity of N7 upon Pt(2+) coordination at (N1)(-)(/0) sites disappears if the micro acidity constants of the appropriate isocharged tautomers of the ligand are properly taken into account. It is further proven, on the basis of the evaluations of the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), that these given conclusions are also valid for nucleotides. In addition, it is shown that the mentioned apparent basicity increase, which results from the use of macro acidity constants, has its origin in the fact that the proton-metal ion (Pt(2+)) interaction (the extent of which depends on the kind of metal ion involved) is less pronounced than the proton-proton interaction. Finally, the proven reciprocal behavior will now allow one to determine micro acidity constants of ligands by studying complexes formed with kinetically inert metal ions. A further result of interest is the proof that the competition of Pt(2+) (or Pd(2+)) with the proton for the (N1)(-) and N7 binding sites of inosinate results in the isomer where the metal ion is at N7 with the proton relegated to (N1)(-); this isomer is favored by a factor of about 2000 compared with the one having the metal ion at (N1)(-) and the proton at N7.  相似文献   

13.
The kinetics and mechanism of transformation reaction of S-[1-(4- methoxyphenyl)pyrrolidin-2-one-3-yl]-N-methyl-isothiuronium bromide into 2-methylimino-5-[2-(4-methoxyphenylamino) ethyl)]thiazolidin-4-one have been studied in aqueous solutions of amine buffers (pH 8.1-11.5) and sodium hydroxide solutions (0.005-0.5 mol l-1) at 25 degrees C and at I = 1 mol l-1 at pseudo-first-order reaction conditions. The kinetics observed shows that the transformation reaction is subject to general base, general acid, and hydroxide-ion catalyses. The rate-limiting step of transformation is the splitting-off a proton from the tetrahedral intermediate In. The value of pKa for S-[1-(4-methoxyphenyl)- pyrrolidin-2-one-3-yl]-N-methylisothiuronium bromide has been determined from the kinetic data (pKa = 8.75 +/- 0.10) and by potentiometric titration (pKa = 8.90 +/- 0.05). With increasing pKa value of the acid buffer component, the value of Br?nsted coefficient beta gradually decreases from about 0.7 to almost zero. The value of pKa approximately 10 for the intermediate to base-catalysed transformation has been found from this dependence. In the N-methylpyrrolidine and triethylamine buffers, the rate-limiting step of transformation is changed into ring opening of In-, and the general-base-catalysed reaction changes into a specific-base-catalysed one.  相似文献   

14.
The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.  相似文献   

15.
A cationic, pentanuclear aluminium phosphonate cage, [L(4)Al(5)Cl(6)(THF)(6)]Cl, 1, supported by (phthalimidomethyl) phosphonate, (L), has been synthesized and characterized. This polynuclear cage features the phosphonate ligand in an unusual coordination mode, supporting five aluminium atoms in two different environments. In comparison, the aqueous reaction of LH(2) with In(ClO(4))(3) afforded [{(LH)In(H(2)O)}(H(2)O)(2)(ClO(4))](n), 2, an indium(iii) phosphonate coordination polymer, that has been crystallographically characterized. Reactions of the corresponding phosphonate ester, diethyl (phthalimidomethyl) phosphonate, (L'), with GaI(3) and InCl(3) afforded the simple coordination complexes, [L'·GaI(3)], 3, and [L'·InCl(3)(THF)], 4.  相似文献   

16.
Rate constants for the reactions of OH radicals and NO3 radicals with dimethyl phosphonate [DMHP, (CH3O)2P(O)H], dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], and dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5] have been measured at 296 +/- 2 K and atmospheric pressure using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-12) cm3 molecule(-1) s(-1)) were as follows: DMHP, 4.83 +/- 0.25; DMMP, 10.4 +/- 0.6; and DMEP, 17.0 +/- 1.0, with a deuterium isotope effect of k(OH + DMMP)/k(OH + DMMP-d9) = 4.8 +/- 1.2. The rate constants obtained for the NO3 radical reactions (in units of 10(-16) cm3 molecule(-1) s(-1)) were as follows: DMHP, < 1.4; DMMP, 2.0 +/- 1.0; and DMEP, 3.4 +/- 1.4. Upper limits to the rate constants for the O3 reactions of < 8 x 10(-20) cm3 molecule(-1) s(-1) for DMHP and < 6 x 10(-20) cm3 molecule(-1) s(-1) for DMMP and DMEP were determined. Products of the reactions of OH radicals with DMHP, DMMP, and DMEP were investigated in situ using atmospheric pressure ionization mass spectrometry (API-MS) and, for the DMMP and DMEP reactions, Fourier transform infrared (FT-IR) spectroscopy. API-MS analyses showed the formation of products of molecular weight 96 and 126, attributed to CH3OP(O)(H)OH and (CH3O)2P(O)OH, respectively, from DMHP; of molecular weight 110, attributed to CH3OP(O)(CH3)OH, from DMMP; and of molecular weight 124 and 126, attributed to CH3OP(O)(C2H5)OH and (CH3O)2P(O)OH, respectively, from DMEP. FT-IR analyses showed formation (values given are % molar yields) of the following: from DMMP, CO, 54 +/- 6; CO2, 5 +/- 1 in dry air; HCHO, 3.9 +/- 0.7; HC(O)OH, < 1.4 in dry air; RONO2, approximately 4; and formate ester, approximately 8; and from DMEP, CO, 50 +/- 7; CO2, 11 +/- 4; CH3CHO, 18 +/- 8; HCHO, < 7; HC(O)OH, < 6; RONO2, < or = 5; and formate ester, 5.0 +/- 1.5. Possible reaction mechanisms are discussed.  相似文献   

17.
The acidity constants of guanylyl(3'-->5')guanosine (GpG(-)) and 2'-deoxyguanylyl(3'-->5')-2'-deoxyguanosine [d(GpG)(-)] for the deprotonation of their (N1)H sites were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO(3)). The same method was used for the determination of the stability constants of the 1:1 complexes formed between Mg(2+), Ni(2+), or Cd(2+) (= M(2+)) and (GG-H)(2-), and in the case of Mg(2+) also of (GG-2H)(3-), where GG(-) = GpG(-) or d(GpG)(-). The stability constants of the M(GG)(+) complexes were estimated. The acidity constants of the H(dGuo)(+) and dGuo species (dGuo = 2'-deoxyguanosine) and the stability constants of the corresponding M(dGuo)(2+) and M(dGuo-H)(+) complexes were also measured. Comparison of these and related data allows the conclusion that N7 of the 5'G unit in GG(-) is somewhat more basic than the one in the 3'G moiety; the same holds for the (N1)(-) sites. On the basis of comparisons with the stability constants measured for the dGuo complexes, it is concluded that M(2+) binding of the GG dinucleoside monophosphates occurs predominantly in a mono-site fashion, meaning that macrochelate formation is not very pronounced. Indeed, it was a surprise to find that the stabilities of the complexes of dGuo or (dGuo-H)(-) and the corresponding ones derived from GG(-) are so similar. Consequently, it is suggested that in the M(GG)(+) and M(GG-H) complexes the metal ion is mainly located at N7 of the 5'G unit since this is the more basic site allowing also an outer-sphere interaction with the C6 carbonyl oxygen and because this coordination mode is also favorable for an electrostatic interaction with the negatively charged phosphodiester bridge. It is further suggested that Mg(2+) binding (which is rather weak compared to that of Ni(2+) and Cd(2+)) occurs mainly in an outer-sphere mode, and on the basis of the so-called Stability Ruler it is concluded that the binding properties of Zn(2+) to the GG species are similar to those of Ni(2+) and Cd(2+).  相似文献   

18.
Two-electron reduction occurs when the Re(V) precursors ReOX3(PPh3)2 and ReO(OEt)X2(PPh3)2 are reacted with biimidazole (biimH2) in boiling chloroform, affording rhenium(III) cationic complexes of the type cis,trans-[ReX2(PPh3)2(biimH2)]X with X = Cl, Br, and I. Crystal structures are determined for the compounds with the three halogens, as well as for the [ReCl2(PPh3)2(biimH2)](benzoate) salt. In all cases, the counterion is attached to the complex cation via hydrogen bonding with the N-H groups of coordinated biimidazole. Variable-temperature 1H NMR spectroscopy shows that a mixture of [ReCl2(PPh3)2(biimH2)](benzoate) and [ReCl2(PPh3)2(biimH2)]Cl is in slow exchange below -50 degrees C in CD2Cl2, indicating that ion pairing is retained in solution. Both N-H groups can be deprotonated with sodium methoxide, and their acidities are evaluated from UV-visible spectra. Competition between monodeprotonated [ReCl2(PPh3)2(biimH)] and various carboxylic acids reveals that the acidity of the first N-H proton corresponds to that of acetic acid (pKa(aq) approximately 4.8). By a similar competitive reaction between bis-deprotonated [ReCl2(PPh3)2(biim)]- and phenols, the second acidity is estimated to be close to that of phenol (pKa(aq) approximately 9.8).  相似文献   

19.
The acidity constants of 3-fold protonated 9-[2-(2-phosphonoethoxy)ethyl]adenine, H3(PEEA)+, and of 2-fold protonated (2-phosphonoethoxy)ethane, H2(PEE), and the stability constants of the M(H;PEEA)+, M(PEEA), and M(PEE) complexes with M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ have been determined (potentiometric pH titrations; aqueous solution; 25 degrees C; I = 0.1 M, NaNO3). It is concluded that in the M(H;PEEA)+ species, the proton is at the phosphonate group and the metal ion at the adenine residue. The application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3))H for simple phosph(on)ate ligands, R-PO3(2-), where R represents a residue that does not affect metal-ion binding, proves that the M(PEEA) complexes of Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ as well as the M(PEE) complexes of Co2+, Cu2+, and Zn2+ have larger stabilities than is expected for a sole phosphonate coordination of M2+. For the M2+ complexes without an enhanced stability (e.g., Mg2+ or Mn2+), it is concluded that M2+ binds in a monodentate fashion to the phosphonate group of the two ligands. Combination of all of the results allows the following conclusions: (i) The increased stability of the Co(PEE), Cu(PEE), Zn(PEE), and Co(PEEA) complexes is due to the formation of six-membered chelates involving the ether-oxygen atom of the aliphatic residue (-CH2-O-CH2CH2-PO3(2-)) of the ligands with formation degrees of about 15-30%. (ii) Cd(PEEA) forms a macrochelate with N7 of the adenine residue (formation degree about 30%); Ni(PEEA) has similar properties. (iii) With Zn(PEEA), both mentioned types of chelates are observed, that is, Zn(PEEA)(cl/O) and Zn(PEEA)(cl/N7), with formation degrees of about 13 and 41%, respectively; the remaining 46% is due to the "open" isomer Zn(PEEA)(op) in which the metal ion binds only to the PO3(2-) group. (iv) Most remarkable is Cu(PEEA) because a fourth isomer, Cu(PEEA)(cl/O/N3), is formed that contains a six-membered ring involving the ether oxygen next to the phosphonate group and also a seven-membered ring involving N3 of the adenine residue with a very significant formation degree of about 50%. Hence, PEEA(2-) is a truly ambivalent ligand, its properties being strongly dependent on the kind of metal ion involved. Comparisons with M2+ complexes formed by the dianions of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) and related ligands reveal that five-membered chelates involving an ether-oxygen atom are considerably more stable than the corresponding six-membered ones. This observation offers an explanation of why PMEA is a nucleotide analogue with excellent antiviral properties and PEEA is not.  相似文献   

20.
We describe the structure of a new zirconium N-ethylpyridinium phosphonate, Zr(O(3)PCH(2)CH(2)NC(5)H(5))(F(-))(3), that has been determined by single-crystal X-ray analysis (monoclinic, P2(1)/c (No. 14), a = 12.3634(12) A, b = 9.3090(17) A, c = 9.8077(13) A, beta = 112.819(8) degrees, V = 1040.4(3) A(3), Z = 4). This structure is unlike any other reported zirconium phosphonate. Octahedral coordination about zirconium is completed by three oxygen atoms of three different phosphonate groups and three fluoride ligands. The structure is composed of corrugated infinite layers of these Zr octahedra that corner share their three oxygen atoms with the phosphonate tetrahedra. The appended cationic pyridinium groups lie between the inorganic sheets and are charge-balanced by the [Zr(O(3)P-)(3)F(3)](-) octahedra. This structure represents a new example of the structure-directing influence of cationic organic ligands on the zirconium phosphonate framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号