首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The kinetics of the proton transfer reactions between the 9-methyl-10-phenylanthracene radical cation (MPA(+)(.)) with 2,6-lutidine were studied in acetonitrile-Bu(4)NBF(4) (0.1 M) using derivative cyclic voltammetry. Comparisons of extent of reaction-time profiles with theoretical data for both the simple single-step proton transfer and a mechanism involving the formation of a donor-acceptor complex prior to unimolecular proton transfer were made. The experimental extent of reaction-time profiles deviated significantly from those simulated for the single-step mechanism, while excellent fits of experimental to theoretical data, in the pre-steady-state period, for the complex mechanism were observed. In this time period, the apparent deuterium kinetic isotope effects (KIE(app)) were observed to vary significantly with the extent of reaction as predicted by the complex mechanism. Resolution of the apparent rate constants into the microscopic rate constants for the complex mechanism resulted in a real kinetic isotope effect (KIE(real)) equal to 82 at 291 K. Arrhenius activation parameters (252-312 K) for the reactions of MPA(+)(*) with 2,6-lutidine in acetonitrile-Bu(4)NBF(4) (0.1 M) revealed E(a)(D) - E(a)(H) equal to 2.89 kcal/mol and A(D)/A(H) equal to 2.09. In this temperature range, KIE(real) varied from 46 at the highest temperature to 134 at the lowest. The large KIE(real), along with the Arrhenius parameters, are indicative of extensive tunneling for the proton transfer steps.  相似文献   

2.
The kinetics of the proton-transfer reactions between 1-nitro-1-(4-nitrophenyl)ethane (NNPE(H(D))) and hydroxide ion in water/acetonitrile (50/50 vol %) were studied at temperatures ranging from 289 to 319 K. The equilibrium constants for the reactions are large under these conditions, ensuring that the back reaction is not significant. The extent of reaction/time profiles during the first half-lives are compared with theoretical data for the simple single-step mechanism and a 2-step mechanism involving initial donor/acceptor complex formation followed by unimolecular proton transfer and dissociation of ions. In all cases, the profiles for the reactions of both NNPE(H) and NNPE(D) deviate significantly from those expected for the simple single-step mechanism. Excellent fits of experimental data with theoretical data for the complex mechanism, in the pre-steady-state time period, were observed in all cases. At all base concentrations (0.5 to 5.0 mM) and at all temperatures the apparent kinetic isotope effects (KIE(app)) were observed to increase with increasing extent of reaction. Resolution of the kinetics into microscopic rate constants at 298 K resulted in a real kinetic isotope effect (KIE(real)) for the proton-transfer step equal to 22. Significant proton tunneling was further indicated by the temperature dependence of the rate constants for proton and deuteron transfers: KIE(real) ranging from 17 to 26, E(a)(D) -- E(a)(H) equal 2.8 kcal/mol, and A(D)/A(H) equal to 4.95.  相似文献   

3.
The reaction of 10-methylacridinium cation (MA+) with isopropanol in the parent alcohol medium under dark, oxygen-free, and refluxing conditions gave hydride transfer product 10-methyl-9,10-dihydroacridine (MAH). The kinetics of the alcoholic oxidation reaction, including the kinetic isotope effect and the kinetic temperature effect, were determined. Hydride transfer is involved in the rate-determining step.  相似文献   

4.
The effects of substituents on the temperature dependences of kinetic isotope effect (KIE) for the reactions of the hydride transfer from the substituted 5-methyl-6-phenyl-5,6-dihydrophenanthridine (G-PDH) to thioxanthylium (TX(+)) in acetonitrile were examined, and the results show that the temperature dependences of KIE for the hydride transfer reactions can be converted by adjusting the nature of the substituents in the molecule of the hydride donor. In general, electron-withdrawing groups can make the KIE to have normal temperature dependence, but electron-donating groups can make the KIE to have abnormal temperature dependence. Thermodynamic analysis on the possible pathways of the hydride transfer from G-PDH to TX(+) in acetonitrile suggests that the transfers of the hydride anion in the reactions are all carried out by the concerted one-step mechanism whether the substituent is an electron-withdrawing group or an electron-donating group. But the examination of Hammett-type free energy analysis on the hydride transfer reactions supports that the concerted one-step hydride transfer is not due to an elementary chemical reaction. The experimental values of KIE at different temperatures for the hydride transfer reactions were modeled by using a kinetic equation formed according to a multistage mechanism of the hydride transfer including a returnable charge-transfer complex as the reaction intermediate; the real mechanism of the hydride transfer and the root that why the temperature dependences of KIE can be converted as the nature of the substituents are changed were discovered.  相似文献   

5.
The intramolecular kinetic isotope effect (KIE) for hydride transfer from 10-methyl-9,10-dihydroacridine to 1-benzyl-3-cyanoquinolinium ion has been found to be 5-6 by both (1)H NMR and mass spectrometry. This KIE is consistent with other hydride transfers. It is inconsistent with the high intermolecular KIEs derived by fitting to a two-step mechanism with a kinetically significant intermediate complex, and it is inconsistent with the strong temperature dependence of those KIEs. We therefore reject the two-step mechanism for this reaction, and we suggest that other cases proposed to follow this mechanism are in error.  相似文献   

6.
One representative type of heterocyclic compound that can release a hydride ion is 7,8-dihydro-9-methylcaffeine (CAFH). The one-electron oxidation potential of CAFH [-0.294 (V vs Fc(+/0))] and the one-electron reduction potential of CAF(+) [-2.120 (V vs Fc(+/0))] were obtained using two different methods, CV and OSWV. Applying titration calorimetry data in thermodynamic cycles, the enthalpies of CAFH releasing a hydride ion [57.6 kcal/mol] and releasing a hydrogen atom [80.3 kcal/mol] and of its radical cation CAFH(?+) releasing a proton [33.0 kcal/mol] and releasing a hydrogen atom [38.4 kcal/mol] have been determined. Several conclusions can be drawn from the thermodynamic results: (1) CAFH is a very good single-electron donor whose single-electron oxidation potential is much less positive than that of NAD(P)H model compound BNAH [E(ox) = 0.219 V vs Fc(+/0)]. (2) The single-electron reduction potential of CAF(+) is much more negative than that of BNA(+) [E(red) = -1.419 V], which means that CAF(+) is not a good electron acceptor. Furthermore, CAFH is a very good hydride donor compared to BNAH. The results of non-steady-state kinetic studies, for the reaction of CAFH and AcrH(+)ClO(4)(-), show that the ratio of t(0.50)/t(0.05) is larger than 13.5 and the ratio of k(init)/k(pfo) is larger than 1. The pseudo-first-order rate constants obtained at different reaction stages decrease with the time, and the kinetic isotope was observed to be small at a short reaction time and slowly increases to 3.72 with the progress of the reaction. These kinetic results clearly display that the hydride transfer of CAFH to AcrH(+) in acetonitrile is not a one-step mechanism, while the thermodynamic results show that CAFH is a very good electron donor. The combination of the kinetic results with the thermodynamics analysis shows that the hydride transfer of the caffeine derivative CAFH takes place by a two-step reversible mechanism and there is an intermediate in the reaction.  相似文献   

7.
Choline oxidase catalyzes the flavin-linked oxidation of choline to glycine betaine, with betaine aldehyde as intermediate and oxygen as electron acceptor. Here, the effects of oxygen concentration and temperature on the kinetic isotope effects with deuterated choline have been investigated. The D(kcat/Km) and Dkcat values with 1,2-[(2)H4]-choline were pH-independent at saturating oxygen concentrations, whereas they decreased at high pH to limiting values that depended on oxygen concentration at < or = 0.97 mM oxygen. The kcat/Km and kcat pH profiles had similar patterns reaching plateaus at high pH. Both the limiting kcat/Km at high pH and the pKa values were perturbed to lower values with choline and < or = 0.25 mM oxygen. These data suggest that oxygen availability modulates whether the reduced enzyme-betaine aldehyde complex partitions forward to catalysis rather then reverting to the oxidized enzyme-choline alkoxide species. At saturating oxygen concentrations, the D(kcat/Km) was 10.6 +/- 0.6 and temperature independent, and the isotope effect on the preexponential factors (A(H)'/A(D)') was 14 +/- 3, ruling out a classical over-the-barrier behavior for hydride transfer. Similar enthalpies of activation (deltaH(double dagger)) with values of 18 +/- 2 and 18 +/- 5 kJ mol(-1) were determined with choline and 1,2-[(2)H4]-choline. These data suggest that the hydride transfer reaction in which choline is oxidized by choline oxidase occurs quantum mechanically within a preorganized active site, with the reactive configuration for hydride tunneling being minimally affected by environmental vibrations of the reaction coordinate other than those affecting the distance between the donor and acceptor of the hydride.  相似文献   

8.
It has been suggested that the magnitudes of secondary kinetic isotope effects (2 degrees KIEs) of enzyme-catalyzed reactions are an indicator of the extent of reaction-center rehybridization at the transition state. A 2 degrees KIE value close to the corresponding secondary equilibrium isotope effects (2 degrees EIE) is conventionally interpreted as indicating a late transition state that resembles the final product. The reliability of using this criterion to infer the structure of the transition state is examined by carrying out a theoretical investigation of the hybridization states of the hydride donor and acceptor in the Escherichia coli dihydrofolate reductase (ecDHFR)-catalyzed reaction for which a 2 degrees KIE close to the 2 degrees EIE was reported. Our results show that the donor carbon at the hydride transfer transition state resembles the reactant state more than the product state, whereas the acceptor carbon is more productlike, which is a symptom of transition state imbalance. The conclusion that the isotopically substituted carbon is reactant-like disagrees with the conclusion that would have been derived from the criterion of 2 degrees KIEs and 2 degrees EIEs, but the breakdown of the correlation with the equilibrium isotope effect can be explained by considering the effect of tunneling.  相似文献   

9.
The Diels-Alder reaction between anthracene and tetracyanoethylene in acetonitrile does not reach a steady-state during the first half-life. The reaction follows the reversible consecutive second-order mechanism accompanied by the formation of a kinetically significant intermediate. The experimental observations consistent with this mechanism include extent of reaction-time profiles which deviate markedly from those expected for the irreversible second-order mechanism and initial pseudo first-order rate constants which differ significantly from those measured at longer times. It is concluded that the reaction intermediate giving rise to these deviations cannot be the charge-transfer (CT) complex, which is formed during the time of mixing, but rather a more intimate complex with a geometry favorable to the formation of the Diels-Alder adduct. The kinetics of the reaction were resolved into the microscopic rate constants for the individual steps. The rate constants, as shown in equation 1, at 293 K were observed to be 5.46 M(-)(1) s(-)(1) (k(f)), 14.8 s(-)(1) (k(b)), and 12.4 s(-)(1) (k(p)). Concentration profiles calculated under all conditions show that intermediate concentrations increase to maximum values early in the reaction and then continually decay during the first half-life. It is concluded that the charge-transfer complex may be an intermediate preceding the formation of the reactant complex, but due to its rapid formation and dissociation it is not detected by the kinetic measurements.  相似文献   

10.
The influence of the solvent on the triazolinedione-alkene ene reaction mechanism has been investigated. Both inter- and intramolecular kinetic isotope effects with tetramethylethylenes and 2,2,2-(trideuterio)methyl-7-methyl-2,6-octadiene-[D3]-1,1,1 provide, for the first time, strong evidence for changes in the mechanism of the reaction on going from non-protic to polar protic solvents. In non-protic polar or apolar solvents, an aziridinium imide that equilibrates to an insignificant extent with an open intermediate (a dipolar or a polarized biradical) is formed irreversibly in the first, rate-determining step of the reaction, which is followed by fast hydrogen abstraction. On the contrary, in polar protic solvents, hydrogen abstraction is rate limiting, allowing the main dipolar intermediate to equilibrate with its open intermediate(s) as well as with the starting reagents.  相似文献   

11.
Oxidations of the NADH analogues 10-methyl-9,10-dihydroacridine (AcrH2) and N-benzyl 1,4-dihydronicotinamide (BNAH) by cis-[RuIV(bpy)2(py)(O)]2+ (RuIVO2+) have been studied to probe the preferences for hydrogen-atom transfer vs hydride transfer mechanisms for the C-H bond oxidation. 1H NMR spectra of completed reactions of AcrH2 and RuIVO2+, after more than approximately 20 min, reveal the predominant products to be 10-methylacridone (AcrO) and cis-[RuII(bpy)2(py)(MeCN)]2+. Over the first few seconds of the reaction, however, as monitored by stopped-flow optical spectroscopy, the 10-methylacridinium cation (AcrH+) is observed. AcrH+ is the product of net hydride removal from AcrH2, but hydride transfer cannot be the dominant pathway because AcrH+ is formed in only 40-50% yield and its subsequent oxidation to AcrO is relatively slow. Kinetic studies show that the reaction is first order in both RuIVO2+ and AcrH2, with k = (5.7 +/- 0.3) x 10(3) M(-1) s(-1) at 25 degrees C, DeltaH(double dagger) = 5.3 +/- 0.3 kcal mol(-1) and DeltaS(double dagger) = -23 +/- 1 cal mol(-1) K(-1). A large kinetic isotope effect is observed, kAcrH2/kAcrD2 = 12 +/- 1. The kinetics of this reaction are significantly affected by O2. The rate constants for the oxidations of AcrH2 and BNAH correlate well with those for a series of hydrocarbon C-H bond oxidations by RuIVO2+. The data indicate a mechanism of initial hydrogen-atom abstraction. The acridinyl radical, AcrH*, then rapidly reacts by electron transfer (to give AcrH+) or by C-O bond formation (leading to AcrO). Thermochemical analyses show that H* and H- transfer from AcrH2 to RuIVO2+ are comparably exoergic: DeltaG degrees = -10 +/- 2 kcal mol(-1) (H*) and -6 +/- 5 kcal mol(-1) (H-). That a hydrogen-atom transfer is preferred kinetically suggests that this mechanism has an equal or lower intrinsic barrier than a hydride transfer pathway.  相似文献   

12.
A new mechanism of proton transfer in donor–acceptor complexes with long hydrogen bonds is suggested. The transition is regarded as totally adiabatic. Two closest water molecules that move synchronously by hindered translation to and from the reaction complex are crucial. The water molecules induce a shift of the proton from the donor to the acceptor with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. Expressions for the activation barrier and kinetic hydrogen isotope effect are derived. The general scheme is illustrated with the use of model molecular potentials, and with reference to the excess proton conductivity in aqueous solution.  相似文献   

13.
Riplinger C  Neese F 《Chemphyschem》2011,12(17):3192-3203
A detailed QM/MM study on the reaction mechanism of Cytochrome P450 NO reductase is reported. Two reaction pathways connecting the two well-characterized intermediates as well as two putative intermediates that represent the unknown third intermediate are explored, with emphasis on the unusual direct reduction of the enzymatic active site by the cofactor NADH. Activation barriers and kinetic isotope effect are calculated and reveal that reduction of the NO-bound species occurs in form of a hydride ion transfer. Furthermore, the impact of different hydrogen bonds in the active site to binding and reactivity of NADH is explored. The calculated kinetic and thermodynamic properties for both modelled pathways are used for the kinetic simulation of the entire reaction course. It is thus shown that the unknown key intermediate is the singlet diradical Fe(III)-NHOH(?). It is also found that the mechanism of the N-N bond formation is spin-recoupling, which is only possible due to the diradical character of the key intermediate.  相似文献   

14.
《Tetrahedron》1986,42(20):5559-5566
Photooxidation of electron-rich compounds (donor) sensitized by 9,10-dicyano-anthracene (DCA, acceptor) gives evidence for the effect of solvent po photochemical reaction mechanism. The chemical outcome can be connected with the fluo-rescence data. The formation of O2XXX and 1O2 proceed between the donor and the acceptor upon excitation.  相似文献   

15.
刘有成  李劲 《有机化学》2001,21(11):898-903
对本课题组近年来研究的辅酶NADH模型物还原活化烯烃的反应机理进行了综述。对于辅酶模型物还原2-溴-1-苯基亚乙基丙二腈类化合物的反应,依赖辅酶模型物和底物的结构,反应可以按一步的负氢转移机理或按电子转移机理进行。用手性辅酶模型物进行这一反应,可得到具有中等光学活性的环丙烷衍生物。实验结果表明辅酶模型物BNAH与1,1-二苯基-2,2-二硝基乙烯的反应的过渡态具有部分双自由基和部分共价键形成的特征,为Pross-Shaik“曲线交叉模型”所预测的“中间机理”提供了直接的证据。BNAH与9-亚芴基丙二腈的反应经历电子转移和负电荷在9-位碳上的碳负离子中间体,动力学同位素效应为2.6。  相似文献   

16.
A literature survey on the kinetics of hydride abstractions from CH-groups by carbocations reveals a general phenomenon: Variation of the hydride acceptor affects the rates of hydride transfer to a considerably greater extent than an equal change of the thermodynamic driving force caused by variation of the hydride donor. The origin of this relationship was investigated by quantum chemical calculations on various levels of ab initio and DFT theory for the transfer of an allylic hydrogen from 1-mono- and 1,1-disubstituted propenes (XYC=CH-CH(3)) to the 3-position of 1-mono- and 1,1-disubstituted allyl cations (XYC=CH-CH(2)(+)). The discussion is based on the results of the MP2/6-31+G(d,p)//RHF/6-31+G(d,p) calculations. Electron-releasing substituents X and Y in the hydride donors increase the exothermicity of the reaction, while electron-releasing substituents in the hydride acceptors decrease exothermicity. In line with Hammond's postulate, increasing exothermicity shifts the transition states on the reaction coordinate toward reactants, as revealed by the geometry parameters and the charge distribution in the activated complexes. Independent of the location of the transition state on the reaction coordinate, a value of 0.72 is found for Hammond-Leffler's alpha = deltaDeltaG/deltaDelta(r)G degrees when the hydride acceptor is varied, while alpha = 0.28 when the hydride donor is varied. The value of alpha thus cannot be related with the position of the transition state. Investigation of the degenerate reactions XYC=CH-CH(3) + XYC=CH-CH(2)(+) indicates that the migrating hydrogen carries a partial positive charge in the transition state and that the intrinsic barriers increase with increasing electron-releasing abilities of X and Y. Substituent variation in the donor thus influences reaction enthalpy and intrinsic barriers in the opposite sense, while substituent variation in the acceptor affects both terms in the same sense, in accord with the experimental findings. Marcus theory is employed to treat these effects quantitatively.  相似文献   

17.
A theoretical study of the hydride transfer between formate anion and nicotinamide adenine dinucleotide (NAD(+)) catalyzed by the enzyme formate dehydrogenase (FDH) has been carried out by a combination of two hybrid quantum mechanics/molecular mechanics techniques: statistical simulation methods and internal energy minimizations. Free energy profiles, obtained for the reaction in the enzyme active site and in solution, allow obtaining a comparative analysis of the behavior of both condensed media. Moreover, calculations of the reaction in aqueous media can be used to probe the dramatic differences between reactants state in the enzyme active site and in solution. The results suggest that the enzyme compresses the substrate and the cofactor into a conformation close to the transition structure by means of favorable interactions with the amino acid residues of the active site, thus facilitating the relative orientation of donor and acceptor atoms to favor the hydride transfer. Moreover, a permanent field created by the protein reduces the work required to reach the transition state (TS) with a concomitant polarization of the cofactor that would favor the hydride transfer. In contrast, in water the TS is destabilized with respect to the reactant species because the polarity of the solute diminishes as the reaction proceeds, and consequently the reaction field, which is created as a response to the change in the solute polarity, is also decreased. Therefore protein structure is responsible of both effects; substrate preorganization and TS stabilization thus diminishing the activation barrier. Because of the electrostatic features of the catalyzed reaction, both media preferentially stabilize the ground-state, thus explaining the small rate constant enhancement of this enzyme, but FDH does so to a much lower extent than aqueous solution. Finally, a good agreement between experimental and theoretical kinetic isotope effects is found, thus giving some credit to our results.  相似文献   

18.
Thiourea-based hydrogen bond donor has been recently disclosed by our group to be an efficient organocatalyst for cross-dehydrogenative coupling (CDC) reactions. Here we present a detailed mechanistic study of this reaction using NMR spectroscopy and kinetic isotope effect experiment. The results revealed that α-amino peroxide is the true intermediate within the catalytic cycle, formed via a thiourea-catalyzed rate-determining hydrogen atom transfer (HAT) process. These experimental investigations not only provide somewhat insight into the mechanism of thiourea-catalyzed CDC reactions but also promote their further applications.  相似文献   

19.
In a previous communication, kinetic β-deuterium secondary isotope effects were reported that support a mechanism for substrate-activated turnover of acetylthiocholine by human butyrylcholinesterase (BuChE) wherein the accumulating reactant state is a tetrahedral intermediate ( Tormos , J. R. ; et al. J. Am. Chem. Soc. 2005 , 127 , 14538 - 14539 ). In this contribution additional isotope effect experiments are described with acetyl-labeled acetylthiocholines (CL(3)COSCH(2)CH(2)N(+)Me(3); L = H or D) that also support accumulation of the tetrahedral intermediate in Drosophila melanogaster acetylcholinesterase (DmAChE) catalysis. In contrast to the aforementioned BuChE-catalyzed reaction, for this reaction the dependence of initial rates on substrate concentration is marked by pronounced substrate inhibition at high substrate concentrations. Moreover, kinetic β-deuterium secondary isotope effects for turnover of acetylthiocholine depended on substrate concentration, and gave the following: (D3)k(cat)/K(m) = 0.95 ± 0.03, (D3)k(cat) = 1.12 ± 0.02 and (D3)βk(cat) = 0.97 ± 0.04. The inverse isotope effect on k(cat)/K(m) is consistent with conversion of the sp(2)-hybridized substrate carbonyl in the E + A reactant state into a quasi-tetrahedral transition state in the acylation stage of catalysis, whereas the markedly normal isotope effect on k(cat) is consistent with hybridization change from sp(3) toward sp(2) as the reactant state for deacylation is converted into the subsequent transition state. Transition states for Drosophila melanogaster AChE-catalyzed hydrolysis of acetylthiocholine were further characterized by measuring solvent isotope effects and determining proton inventories. These experiments indicated that the transition state for rate-determining decomposition of the tetrahedral intermediate is stabilized by multiple protonic interactions. Finally, a simple model is proposed for the contribution that tetrahedral intermediate stabilization provides to the catalytic power of acetylcholinesterase.  相似文献   

20.
It has been shown that the rate of symmetrical hydride transfer reaction varies with the hydride affinity of the (identical) donor and acceptor. In that case, Marcus theory of atom and group transfer predicts that the Br?nsted alpha depends on the location of the substituent, whether it is in the donor or the acceptor, and the tightness of the critical configuration, as well as the resemblance of the critical configuration to reactants or products. This prediction has now been confirmed for hydride transfer reactions between heterocyclic, nitrogen-containing cations, which can be regarded as analogues of the enzyme cofactor, nicotinamide adenine dinucleotide (NAD+). A series of reactions with substituents in the donor gives Br?nsted alpha of 0.67 +/- 0.03 and a tightness parameter, tau, of 0.64 +/- 0.06. With substituents in the acceptor alpha = 0.32 +/- 0.03 and tau = 0.68 +/- 0.08. The reactions are all spontaneous, with equilibrium constants between 0.4 and 3 x 10(4), and the two sets span about the same range of equilibrium constants. The two tau values are essentially identical with an average value of 0.66 +/- 0.05. These results can be semiquantitatively mimicked by rate constants calculated for a linear, triatomic model of the reaction. Variational transition state theory and a physically motivated but empirically calibrated potential function were used. The computed rate constants generate an alpha value of 0.56 if the hydride affinity of the acceptor is varied and an alpha of 0.44 if the hydride affinity of the donor is varied. The calculated kinetic isotope effects are similar to the measured values. A previous error in the Born charging term of the potential function has been corrected. Marcus theory can be successfully fitted to both the experimental and computed rate constants, and appears to be the most compact way to express and compare them. The success of the linear triatomic model in qualitatively reproducing these results encourages the continued use of this easily conceptualized model to think about group, ion, and atom transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号