首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude but opposite sign for the donor 13C and acceptor 15N nuclei. In uracil and 4-cyano-4'-ethynylbiphenyl, the CH hydrogen-bonding donors are sp2 and sp hybridized, respectively; a comparison of the calculated changes in 1H chemical shift with those for the sp3 hybridized CH donors in maltose (Yates et al. J. Am. Chem. Soc. 2005, 127, 10216) reveals no marked dependence on hybridization for weak hydrogen-bonding strength.  相似文献   

2.
The open-chain tetrapyrrole compound bilirubin was investigated in chloroform and dimethyl sulfoxide solutions by liquid-state NMR and as solid by (1)H, (13)C, and (15)N magic-angle spinning (MAS) solid-state NMR spectroscopy. Density functional theory (DFT) calculations were performed to interpret the data, using the B3LYP exchange-correlation functional to optimize geometries and to compute NMR chemical shieldings by the gauge-including atomic orbital method. The dependence of geometries and chemical shieldings on the size of the basis sets was investigated for the reference molecules tetramethylsilane, NH(3), and H(2)O, and for bilirubin as a monomer and in clusters consisting of up to six molecules. In order to assess the intrinsic errors of the B3LYP approximation in calculating NMR shieldings, complete basis set estimates were obtained for the nuclear shielding values of the reference molecules. The experimental liquid-state NMR data of bilirubin are well reproduced by a monomeric bilirubin molecule using the 6-311+G(2d,p) basis set for geometry optimization and for calculating chemical shieldings. To simulate the bilirubin crystal, a hexameric model was required. It was constructed from geometry-optimized monomers using information from the X-ray structure of bilirubin to fix the monomeric entities in space and refined by partial optimization. Combining experimental (1)H-(13)C and (1)H-(15)N NMR correlation spectroscopy and density functional theory, almost complete sets of (1)H, (13)C, and (15)N chemical shift assignments were obtained for both liquid and solid states. It is shown that monomeric bilirubin in chloroform solution is formed by 3-vinyl anti conformers, while bilirubin crystals are formed by 3-vinyl syn conformers. This conformational change leads to characteristic differences between the liquid- and solid-state NMR resonances.  相似文献   

3.
The 1H, 13C and 15N absolute shieldings of 13 amines were calculated at the GIAO/B3LYP/6-311++G** level. For some compounds (ethylamine, piperidine and 1-methylpiperidine) two conformations were calculated. The 13C and 15N data could be correctly correlated with experimental chemical shifts, allowing the conformation of 1-methylpiperidine to be established. The 1H NMR absolute shieldings, although less well correlated with delta values, were used to account for the anisotropy effects of the N lone pair.  相似文献   

4.
17O, 15N, 13C, and 1H NMR chemical shieldings are calculated using density functional theory to differentiate among the three primarily helical forms, 310, alpha, and pi in polyalanine peptides under periodic boundary conditions. This study suggests 17O as the best observable, as it has been demonstrated to be sensitive to hydrogen bonding and highly affected by small changes in the polypeptide in helix conformations. This theoretical study seeks to characterize the subtle conformational differences of helical structures by NMR chemical shift observables which may lead to important questions in experimental structure determination on the basis of using chemical shifts to identify protein secondary structures.  相似文献   

5.
Schiff bases of gossypol with benzylamine, methylamine, 4-aminoacetophenone and 4-fluoroaniline have been synthesized and characterized by NMR spectroscopy. All the Schiff bases of gossypol are in the enamine form according to (3)J(HC,NH) and (1)J(N,H) coupling constants. The spectra are basically unchanged by change of solvent (CD(2)Cl(2), THF-d(8) and CD(3)OD) and by variation of temperature. For the derivative of benzylamine, deuterium isotope effects on (13)C chemical shifts are determined. They support strongly the enamine form and serve as a reference for other tautomeric Schiff bases. Structures and NMR nuclear shieldings of model compounds (the second monomer is replaced by a 2-hydroxybenzene ring) have been calculated by density functional theory (DFT) methods. A good correlation is observed between calculated (13)C nuclear shieldings of the enamine form and observed (13)C chemical shifts.  相似文献   

6.
Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8‐bis(4‐toluenesulphonamido)naphthalenes together with N,N‐(naphthalene‐1,8‐diyl)bis(2,2,2‐trifluoracetamide) all with bis(1,8‐dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four‐bond effects are found to be negative indicating transmission via the hydrogen bond. In addition, unusual long range effects are seen. Structures, 1H and 13C NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using density functional theory methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The polypeptide carbobenzoxy-glycyl-L -prolyl-L -leucyl-L -alanyl-L -proline (0.2 M in DMSO-d6) was investigated using 13C, 1H and 15N NMR in natural abundance at 4.7 tesla. The existence of cistrans-Gly-Pro and -Ala-Pro bonds permits up to four isomers, and all four were observed (in a 60:30:7:3 ratio). 13C shifts of the proline β-CH2 resonances are consistent only with the 60% form being transtrans. The 30% form is either transcis or cistrans (order as above) and was tentatively assigned as cis-trans on the basis of relaxation behavior. Refocused INEPT studies aided the 13C assignments. The 15N data were obtained using both NOE and INEPT excitation, with signals evident for the three major isomers. The spectra were analysed by starting from the 13C data, which were assigned based on known regularities in peptide spectra. A 13C? 1H heteronuclear two-dimensional chemical shift correlation experiment allowed direct assignment of proton shifts for major and minor isomers. The NH proton shifts were assigned by running a homonuclear two-dimensional chemical shift correlation experiment and noting the correlation with the previously assigned α-CH protons. The 15N resonances were then assigned from a 15N? 1H heteronuclear two-dimensional chemical shift correlation experiment, relating the 15N signals directly to the NH proton resonances. Isomer interconversion between the two major isomers was demonstrated by performing a magnetization transfer homonuclear 2D experiment. Off-diagonal intensity was noted relating the major and minor isomer alanine NH proton, as well as for the major and minor isomer leucine NH protons.  相似文献   

8.
Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.  相似文献   

9.
Both NMR spectroscopic parameters are calculated as a function of the distance d(N-H) of the O...H...N subsystem of (un- or Z-) substituted ortho-hydroxyaryl Schiff bases, with Z = 4-OMe and 5-Cl. Typical patterns for NMR J couplings and magnetic shieldings, sigma(N) (or the chemical shift delta(N)), are obtained showing that they are reliable sensors from which one can get a deeper insight on the intramolecular proton transfer mechanism. An inflection point is found by representing each NMR spectroscopic parameter as a function of d(N-H) or when the correlation between both parameters is depicted. The analysis of these (cubic) functions shows whether the proton is bound to the oxygen or to the nitrogen atom or is shared by both atoms. In line with these findings, it is possible to predict the position of the proton in the bridge. These theoretical findings are supported by previous experimental measurements. It is shown that nitrogen chemical shift is quite sensitive to substituent effects though (1) J( (15)NH) is not. This last parameter depends on d(NH). When correlating both spectroscopic parameters, a previous delta(N) vs (1) J( (15)NH) linear dependence is generalized to a cubic dependence which seems to be more reliable. Calculations are based on two state of the art methodologies: DFT-B3LYP and polarization propagators at second order of approach (SOPPA) with large enough basis sets.  相似文献   

10.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   

11.
We have obtained the carbon-13 nuclear magnetic resonance spectra of a series of tryptophan-containing peptides and model systems, together with their X-ray crystallographic structures, and used quantum chemical methods to predict the (13)C NMR shifts (or shieldings) of all nonprotonated aromatic carbons (C(gamma), C(delta 2) and C(epsilon 2). Overall, there is generally good accord between theory and experiment. The chemical shifts of Trp C(gamma) in several proteins, hen egg white lysozyme, horse myoglobin, horse heart cytochrome c, and four carbonmonoxyhemoglobins, are also well predicted. The overall Trp C(gamma) shift range seen in the peptides and proteins is 11.4 ppm, and individual shifts (or shieldings) are predicted with an rms error of approximately 1.4 ppm (R value = 0.86). Unlike C(alpha) and N(H) chemical shifts, which are primarily a function of the backbone phi,psi torsion angles, the Trp C(gamma) shifts are shown to be correlated with the side-chain torsion angles chi(1) and chi(2) and appear to arise, at least in part, from gamma-gauche interactions with the backbone C' and N(H) atoms. This work helps solve the problem of the chemical shift nonequivalences of nonprotonated aromatic carbons in proteins first identified over 30 years ago and opens up the possibility of using aromatic carbon chemical shift information in structure determination.  相似文献   

12.
Deuterium isotope effects on the 13C and 15N nuclear shieldings of o-hydroxyazo compounds are described. Both the direct and the equilibrium contributions were determined. Large direct deuterium isotope effects on 15N nuclear shieldings for 1Δ, 2Δ and 4Δ and negative Δ1J(15NH) [D] values were observed. Isotope effects on 15N nuclear shieldings, because of their magnitudes, are shown to be very useful in determining changes in the azo–hydrazone equilibrium. Isotope effects on 13C nuclear shieldings are smaller, but the effects observed at the carbon resonances of the N-phenyl ring are likewise very useful in determining the shift in the equilibrium. Deuterium substitution leads in all cases to a shift in the equilibrium so that the content of the predominant form of the protio compound is increased.  相似文献   

13.
采用动态核磁共振波谱(DNMR)和密度泛函理论(DFT)对N'-苄基酰腙化合物进行构象研究. 实验和理论计算表明, 1H NMR图谱中三组不同质子的双峰裂分是由N—N键旋转位阻造成的, 而这三个双峰裂分的化学位移差异随温度升高而减小. 通过模拟化学位移差异与温度的关系, 得到了交换速率常数, 采用Eyring方程计算出N—N键旋转位阻. 提出顺式和反式共存的模型来分析酰胺质子信号分裂的原因, 并利用DFT计算得出优化的异构体构象及其最低能量. 端甲基质子和次甲基质子信号裂分也来源于N—N键旋转受阻. N'-苄基酰腙通过缩合反应转变成1,3,4-二唑化合物, 消除了甲基空间取向的差异, 其信号变为单峰.  相似文献   

14.
Ortho‐substituted and para‐substituted aminophenyl benzothiazoles were synthesised and characterised using NMR spectroscopy. A comparison of the proton chemical shift values reveals significant differences in the observed chemical shift values for the NH protons indicating the presence of a hydrogen bond in all ortho‐substituted compounds as compared to the para compounds. The presence of intramolecular hydrogen bond in the ortho amino substituted aminophenyl benzothiazole forces the molecule to be planar which may be an additional advantage in developing these compounds as Alzheimer's imaging agent because the binding to amyloid fibrils prefers planar compounds. The splitting pattern of the methylene proton next to the amino group also showed significant coupling to the amino proton consistent with the notion of the existence of slow exchange and hydrogen bond in the ortho‐substituted compounds. This is further verified by density functional theory calculations which yielded a near planar low energy conformer for all the o‐aminophenyl benzothiazoles and displayed a hydrogen bond from the amine proton to the nitrogen of the thiazole ring. A detailed analysis of the 1H, 13C and 15N NMR chemical shifts and density functional theory calculated structures of the compounds are described. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Substituted pyrazolopyridines are potent inhibitors of phosphodiesterases and cyclin-dependent kinases. In this study, NMR was used to investigate the potential N1-H and N2-H tautomerism of 5-substituted pyrazolo[3,4-c]pyridine derivatives. Six compounds were fully characterized by using (1)H, (13)C, and (15)N chemical shifts and indirect (1)H--(13)C and (1)H--(15)N coupling constants. The (1)H NMR spectra were measured over a broad range of temperatures. All of the compounds were shown to exist predominantly in the N1-H tautomeric form. Complementary quantum-chemical calculations of the chemical shieldings and indirect spin-spin couplings support the structural conclusions drawn.  相似文献   

16.
1H, 13C and 15N NMR spectra of eight 2-amino-N'-(aryl)-benzamidines and of the parent compound were recorded, and unequivocal chemical shift assignments through the use of COSY, 1H-J resolved, HETCOR and COLOC sequences were performed. 1H and 13C chemical shifts for the nuclei of the benzamidine aromatic ring were not affected by the substituents present at N'-phenyl group, while the substituent effects in the chemical shifts of the same nuclei of N'-phenyl ring were very similar to the ones reported for the corresponding monosubstituted benzenes, indicating that there is no interaction between the two aromatic rings. 15N NMR spectra (DEPT sequence) show just two hydrogenated nitrogen atoms, which confirm that the amino form is the most stable tautomer, but the observation of a sharp signal and two broad signals (15N decoupled spectra), and the corresponding broad signal for the =C-NH(2) protons (in the 1H spectra), indicates the occurrence of tautomerism between the amino and imino forms, observable for some of the studied benzamidines. Theoretical calculations lead to the conclusion that these compounds occur mostly as the amino tautomer with Z configuration, which is stabilized by hydrogen bonding.  相似文献   

17.
The 13C NMR chemical shifts for functionalized (7,0), (8,0), (9,0), and (10,0) single-walled carbon nanotubes (SWNTs) have been studied computationally using gauge-including projector-augmented plane-wave (GIPAW) density functional theory (DFT). The functional groups NH, NCH3, NCH2OH, and CH2NHCH2 have been considered, and different sites where covalent addition or substitution may occur have been examined. The shifts of the carbons directly attached to the group are sensitive to the bond which has been functionalized and may, therefore, be used to identify whether the group has reacted with a parallel or a diagonal C-C bond. The addition of NH to a parallel bond renders the functionalized carbons formally sp3-hybridized, yielding shifts of around 44 ppm, independent of the SWNT radius. Reaction with a diagonal bond retains the formal sp2 hybridization of the substituted carbons, and their shifts are slightly lower or higher than those of the unsubstituted carbon atoms. The calculated 1H NMR shifts of protons in the functional groups are also dependent upon the SWNT-group interaction. Upon decreasing the degree of functionalization for the systems where the group is added to a parallel bond, the average chemical shift of the unfunctionalized carbons approaches that of the pristine tube. At the same time, the shifts of the functionalized carbons remain independent upon the degree of functionalization. For the SWNTs where N-R attaches to a parallel bond, the average shift of the sp2 carbons was found to be insensitive to the substituent R. Moreover, the shifts of the functionalized sp3 carbons, as well as of the carbons within the group itself, are independent of the SWNT radius. The results indicate that a wealth of knowledge may be obtained from the 13C NMR of functionalized SWNTs.  相似文献   

18.
The hydrophobic cavity of Lipid Transfer Protein 1 from Nicotiana tabacum is investigated in detail by NMR using xenon as a spy. The analysis of the (129)Xe chemical shifts and self-relaxation times gives evidence of protein-xenon interaction. Thermodynamics of the binding is characterized through the study of aliphatic (1)H and (13)C chemical shift variation as a function of xenon pressure. The binding constant is evaluated to 75.5 +/- 1.0 M(-1) at 293 K. The location of xenon inside the cavity is deduced from SPINOE experiments. The noble gas appears to occupy four sites, and xenon self-relaxation experiments indicate that it quickly jumps between different sites. The chemical shifts of amide protons and nitrogens also depend on the xenon concentration, either specifically or nonspecifically for atoms at the external surface of the protein. Yet, contrary to aliphatic atoms, they do not correspond to short-range interactions as confirmed by magnetization transfer experiments between laser-polarized xenon and protons in H(2)O. These (15)N chemical shift variations, used in combination with (15)N transverse self-relaxation rates to determine the lower limit of the binding rate, consequently reveal subtle changes in the structure of the protein upon binding.  相似文献   

19.
The electronic ground states of the bacteriochlorophyll a type B800 and type B850 in the light-harvesting 2 complex of Rhodopseudomonas acidophila strain 10050 have been characterized by magic angle spinning (MAS) dipolar (13)C-(13)C correlation NMR spectroscopy. Uniformly [(13)C,(15)N] enriched light-harvesting 2 (LH2) complexes were prepared biosynthetically, while [(13)C,(15)N]-B800 LH2 complexes were obtained after reconstitution of apoprotein with uniformly [(13)C,(15)N]-enriched bacteriochlorophyll cofactors. Extensive sets of isotropic (13)C NMR chemical shifts were obtained for each bacteriochlorin ring species in the LH2 protein. (13)C isotropic shifts in the protein have been compared to the corresponding shifts of monomeric BChl a dissolved in acetone-d(6). Density functional theory calculations were performed to estimate ring current effects induced by adjacent cofactors. By correction for the ring current shifts, the (13)C shift effects due to the interactions with the protein matrix were resolved. The chemical shift changes provide a clear evidence for a global electronic effect on the B800 and B850 macrocycles, which is attributed to the dielectrics of the protein environment, in contrast with local effects due to interaction with specific amino acid residues. Considerable shifts of -6.2 < Deltasigma < +5.8 ppm are detected for (13)C nuclei in both the B800 and the B850 bacteriochlorin rings. Because the shift effects for the B800 and B850 are similar, the polarization of the electronic ground states induced by the protein environment is comparable for both cofactors and corresponds with a red shift of approximately 30 nm relative to the monomeric BChl dissolved in acetone-d(6). The electronic coupling between the B850 cofactors due to macrocycle overlap is the predominant mechanism behind the additional red shift in the B850.  相似文献   

20.
We present a systematic density functional investigation on the prediction of the 13C, 15N, 17O, and 19F NMR properties of 23 molecules with 21 density functionals. Extensive comparisons are made for both 13C magnetic shieldings and chemical shifts with respect to the gas phase experimental data and the best CCSD(T) results. We find that the OPBE and OPW91 exchange-correlation functionals perform significantly better than some popular functionals such as B3LYP and PBE1PBE, even surpassing, in many cases, the standard wavefunction-based method MP2. Further analysis has been performed to explore the individual role played by various exchange and correlation functionals. We find that the B88 and PBE exchange functionals have a too strong tendency of deshielding, leading to too deshielded magnetic shielding constants; whereas the OPTX exchange functional performs remarkably well. We claim that the main source of error arises from the exchange functional, but correlation functional also makes important contribution. We find that the correlation functionals may be grouped into two classes. class A, such as LYP and B98, leads to deshielded NMR values, deteriorating the overall performance; whereas class B, such as PW91 and PBE, generally increases the absolute shieldings, which complements the exchange functionals, leading to improved results in the calculation of NMR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号