首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex Me5C5(Cl)Ge→ W(CO)5, (I), which has a fairly low thermal stability, was prepared by treatment of the ylide complex (THF)Cl2Ge→ W(CO)5 with a Me5C5 donor, and has been found to undergo a molecular rearrangement. The complex cannot be prepared directly by irradiation of W(CO)6 in the presence of Me5C5GeCl in an inert solvent, and attempts to prepare it in this way yield the ionic species Me5C5Ge+ Cl3Ge→ W(CO)5] (III), as does its thermal decomposition. Studies of the formation of III and independent syntheses are described.  相似文献   

2.
The Zn-Zn bonded compound [(η(5)-Cp*)(2)Zn(2)] was investigated as catalyst for the inter- and intramolecular hydroamination reaction. High reaction rates under mild conditions were observed. This is the first application of a Zn-Zn bonded compound as catalyst.  相似文献   

3.
The synthesis of new bidentate métalloligands derived from tantalocene(C5Me5)(C5H4X)Ta(H2)(PPh2) (X = PPh2, 2P; X = CH2CH2NMe22N) and (C5Me5)(C5H4X)Ta(CO)(PPh2) 4(P,N) is described. When opposed to chromium unsaturated fragments the phosphino functionalised complexes 2P and 4P act as chelating bidentate ligands affording Ta(V) (C5Me5)(C5H4PPh2)Ta(CH2) (μ-PPh2)Cr(CO)4 or Ta(III) (C5Me5)(C5H4PPh2)Ta(CO)(μ-PPh2)Cr(CO)4 bimetallic complexes. The same reaction carried out starting from 2N gives rise to a μ-phosphido, μ-hydrido dibridged complex Cp*(C5H4CH2CH2NMe2)TaH(μ-H)(μ-PPh2)Cr(CO)4.  相似文献   

4.
《Polyhedron》1988,7(8):665-668
The complexed adduct, 2-Bun(C5H5N)Li·(C5H5N)2, (3), synthesized by reaction of BunLi with a three-fold excess of pyridine, has been characterized. 1H NMR studies on solutions of (3) of various ages and histories (thermal and photochemical) have shown that the adduct deteriorates to the hydrolysis product 2-butylpyridine (1) via 1,2-dihydro-2-butylpyridine (4).  相似文献   

5.
Potassium naphthalenide reductions of [(C5R5)HfCl3] (R  H, Me) in 1,2-dimethoxyethane at −60°C followed by carbonylation at atmospheric pressure provide 25–50% isolated yields of the first examples of carbonyl anions of hafnium(0), [(C5H5)Hf(Co)4] and [(C5Me5)Hf(CO)4]. These were isolated as tetraethylammonium salts as well as K(cryptand-2.2.2) and K(15-Crown-5)2+ salts for the latter anion and now represent two of only four presently known Hf0 carbonyls. They were characterized by elemental analyses, IR and 1H and 13C NMR spectra.  相似文献   

6.
近年来 ,有许多文献报道茂金属催化剂的负载化及其在烯烃聚合中的应用 ,这对发展新型茂金属催化剂和开发新型高分子材料有重要意义 [1,2 ] .我们 [3]曾报道壳聚糖负载稀土催化剂用于甲基丙烯酸甲酯的配位聚合有优良性能 .以五甲基环戊二烯为配体的有机稀土配合物 ,如 [Sm H( C5Me5) ]2 ,[C5Me5]Ln Me( THF) ( Ln=Sm,Yb)等在甲苯中单组分引发甲基丙烯酸甲酯聚合及内酯开环聚合具有许多优异性能[4 ,5] ,但是经负载化的该类催化剂的聚合性能尚未见报道 .本文报道将 [C5Me5]2 Sm Me·( THF)负载于二氧化硅 ,引发甲基丙烯酸甲酯聚合的结…  相似文献   

7.
《Vibrational Spectroscopy》2010,52(2):226-237
Infrared spectra of the powdered (C3N2H5)5Bi2Cl11, (C3N2H5)5Bi2Br11and (C3N2H5)5Sb2Br11 crystals in the region of internal vibrations of the imidazolium cations (3600 and 400 cm−1) at the temperature intervals of 10–300 K, covering paraelectric–ferroelectric phase transitions, are presented and discussed in this paper. The research shows that the vibrational states of the imidazolium cations change markedly during the paraelectric–ferroelectric phase transition. The continuous nature of these transitions is well reflected in the infrared spectra, which is consistent with the previous X-ray and dielectric findings.  相似文献   

8.
Reactions of the alkyne cluster Os3(μ-CO)(CO)93-Me3C2Me) with alkynes Me3SiC≡CR (R=Me, Bun) in refluxing hexane result in the formation of clusters Os3(CO)93-C(SiMe3)=C(Me)C=C(SiMe3)=C(Me)C=C(SiMe3)R} (2a: R=Me;3a: R=Bun). The dienediyl ligand in these complexes is formed by alkyne-vinylidene coupling, with vinylidene generated in the course of reaction from the alkyne molecule by the acetylene-vinylidene rearrangement involving a 1,2-shift of the Me3Si group. The structure of cluster3a was determined by X-ray structural analysis. The dienediyl ligand is coordinated to three metal atoms of the cluster framework by two π-ethylene bonds with two osmium atoms and two σ-bonds with the third osmium atom with the formation of the osmacyclobutene moiety. The1H and13C NMR study of13CO-enriched samples of clusters2a and3a revealed the stereochemical nonrigidity of these molecules due to the exchange of the hydrocarbon and carbonyl ligands.  相似文献   

9.
10.
The zirconium silyl complex CpCpZr[Si(SiMe3)3]Me (1; Cp = η5-C5H5; Cp = η5-C5Me5) reacts with nitriles RCN (R = Me, CHCH2, Ph) to form the azomethine derivatives CpCpZr[NC(R)Si(SiMe3)3]Me (2, R = Me; 3, R = CHCH2; 4, R = Ph). Pyridine reacts with 1 to give a 75% yield of CpCpZr[NC5H5Si(SiMe3)3]Me (5), which results from 1,2-addition of the ZrSi bond of 1 to pyridine. These reactions provide the first examples of nitrile and pyridine insertions into a transition metal-silicon bond. The related silyl complexes Cp2Zr[Si(SiMe3)3]Me and CpCpZr[Si(SiMe3)3]Cl are much less reactive toward nitriles and pyridine.  相似文献   

11.
《Tetrahedron: Asymmetry》1998,9(23):4219-4238
A wide variety of planar chiral cyclopalladated compounds of general formulae [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl(L)] (with L=py-d5 or PPh3), [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}(acac)] or [Pd{[(R1–CC–R2)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (with R1=R2=Et; R1=Me, R2=Ph; R1=H, R2=Ph; R1=R2=Ph; R1=R2=CO2Me or R1=CO2Et, R2=Ph) are reported. The diastereomers {(Rp,R) and (Sp,R)} of these compounds have been isolated by either column chromatography or fractional crystallization. The free ligand (R)-(+)-[{(η5-C5H4)–CHN–CH(Me)–C10H7}Fe(η5–C5H5)] (1) and compound (+)-(Rp,R)-[Pd{[(Et–CC–Et)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (7a) have also been characterized by X-ray diffraction. Electrochemical studies based on cyclic voltammetries of all the compounds are also reported.  相似文献   

12.
《Chemical physics letters》1985,115(6):540-544
Two major contributions to the shift of the CO stretch vibrational frequency between free CO and chemisorbed CO/Cu(100) are identified. The overlap and consequent repulsion between the CO and metal orbitals leads to an increase in the frequency. The metal charge donation and dative bonding to CO 2π* leads to a decrease.  相似文献   

13.
A recent crystallographic study has shown that, in the solid state, P(C(6)H(5))(4)N(3) and As(C(6)H(5))(4)N(3) have ionic [M(C(6)H(5))(4)](+)N(3)(-)-type structures, whereas Sb(C(6)H(5))(4)N(3) exists as a pentacoordinated covalent solid. Using the results from density functional theory, lattice energy (VBT) calculations, sublimation energy estimates, and Born-Fajans-Haber cycles, it is shown that the maximum coordination numbers of the central atom M, the lattice energies of the ionic solids, and the sublimation energies of the covalent solids have no or little influence on the nature of the solids. Unexpectedly, the main factor determining whether the covalent or ionic structures are energetically favored is the first ionization potential of [M(C(6)H(5))(4)]. The calculations show that at ambient temperature the ionic structure is favored for P(C(6)H(5))(4)N(3) and the covalent structures are favored for Sb(C(6)H(5))(4)N(3) and Bi(C(6)H(5))(4)N(3), while As(C(6)H(5))(4)N(3) presents a borderline case.  相似文献   

14.
The reaction of sodium cyanide with [(η5-C5H5)(PMe3)2RuCC(Me)Ph]PF6 (1) proceeds with high stereoselectivity (> 95 : 5) to give (Z)-(η5-C5H5)(PMe3)2RuC(CN)C(Me)Ph, which under acid conditions isomerises (< 5 : 95) to the E isomer.  相似文献   

15.
16.
Abstract

The UV irradiation of (η5-C5Me5)Re(CO)3 in the presence of 1,2,4,5-C6Cl4H2 and 1,3,5-C6Cl3H3 (λ = 350 nm, hexane solution) effected intramolecular C—Cl activation, generating the complexes trans-(η5-C5Me5)Re(CO)2(2,4,5-C6Cl5-nHn)Cl, ((1), n = 2; (2), n = 3), respectively. Complex (1) dissolved in polar organic solvents produces, an equilibrium mixture with its cis isomer. The reaction of (1) with AgBF4, in acetonitrile, led to formation of the cationic complex [cis-(η5-C5Me5)Re(CO)2(2,4,5-C6Cl3H2)(MeCN)]+. The tetramethylfulvene complex (η6-C5Me4CH2)Re(CO)2(2,4,5-C6Cl3H2) (3) was obtained by reacting the cationic complex with the fluorinating agent Et3N′3HF.  相似文献   

17.
This contribution is to report the application of simple lanthanide amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 exhibiting a high activity toward catalyzing Henry reaction of aromatic aldehydes with nitroalkanes to give β-nitroalcohols or β-nitroolefins with a very good chemoselectivity by controlling the reaction temperatures and by selecting aromatic aldehydes. It was found that this catalytic system was compatible with a wide range of substrates of aldehydes.  相似文献   

18.
5-C5Me5)(CO)2(PPh3)MoCHO (2) one of the few isolated neutral metal formyls, reacts with the electrophilic reagents (CF3COOH and CH3SO3F without disproportionation to give the secondary carbene complexes [(η5-C5Me5)(CO)2(PPh3)Mo(CHOE)]+ X (E = H, X = CF3COO (4); E = Me, X = PF6 (5)).  相似文献   

19.
20.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号