首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
The asymmetric addition of trimethylsilyl cyanide to aldehydes can be catalysed by Lewis acids and/or Lewis bases, which activate the aldehyde and trimethylsilyl cyanide, respectively. It is not always apparent from the structure of the catalyst whether Lewis acid or Lewis base catalysis predominates. To investigate this in the context of using salen complexes of titanium, vanadium and aluminium as catalysts, a Hammett analysis of asymmetric cyanohydrin synthesis was undertaken. When Lewis acid catalysis is dominant, a significantly positive reaction constant is observed, whereas reactions dominated by Lewis base catalysis give much smaller reaction constants. [{Ti(salen)O}2] was found to show the highest degree of Lewis acid catalysis, whereas two [VO(salen)X] (X=EtOSO3 or NCS) complexes both displayed lower degrees of Lewis acid catalysis. In the case of reactions catalysed by [{Al(salen)}2O] and triphenylphosphine oxide, a non‐linear Hammett plot was observed, which is indicative of a change in mechanism with increasing Lewis base catalysis as the carbonyl compound becomes more electron‐deficient. These results suggested that the aluminium complex/triphenylphosphine oxide catalyst system should also catalyse the asymmetric addition of trimethylsilyl cyanide to ketones and this was found to be the case.  相似文献   

2.
Sterically encumbered Lewis acid and Lewis base combinations do not undergo the ubiquitous neutralization reaction to form “classical” Lewis acid/Lewis base adducts. Rather, both the unquenched Lewis acidity and basicity of such sterically “frustrated Lewis pairs (FLPs)” is available to carry out unusual reactions. Typical examples of frustrated Lewis pairs are inter‐ or intramolecular combinations of bulky phosphines or amines with strongly electrophilic RB(C6F5)2 components. Many examples of such frustrated Lewis pairs are able to cleave dihydrogen heterolytically. The resulting H+/H? pairs (stabilized for example, in the form of the respective phosphonium cation/hydridoborate anion salts) serve as active metal‐free catalysts for the hydrogenation of, for example, bulky imines, enamines, or enol ethers. Frustrated Lewis pairs also react with alkenes, aldehydes, and a variety of other small molecules, including carbon dioxide, in cooperative three‐component reactions, offering new strategies for synthetic chemistry.  相似文献   

3.
Quantum chemical methods (MP2 and B3LYP) together with a topological analysis of the charge density have been used to study the BH3- or BF3-mediated reaction of benzonitrile oxide with acetonitrile, propyne and propene. In the reaction with propene or propyne, addition of Lewis acids has only little influence on the outcome of the reactions. The cycloaddition of nitrile oxides with nitriles, however, is generally promoted by strong Lewis acids. When the Lewis acid coordination takes place at the nitrile oxide the reactant is activated and the product binds weakly to the Lewis acid so that the reaction is expected to be catalytic. In the case of coordination to the nitrile the reaction is Lewis acid mediated. Here the reactant is not much influenced by addition of Lewis acid, but the transition state and the product are stabilised and consequently such processes require a stoichiometric amount of Lewis acid and form a stable Lewis acid-product complex.It has also been demonstrated that the different activation routes for these reactions involve different reaction mechanisms. Whereas the reaction of a Lewis acid coordinated nitrile oxide is of ‘inverse electron demand’, the Lewis acid coordinated nitrile reacts through a ‘normal electron demand’ cycloaddition.  相似文献   

4.
Reactions of some typical acid halides of carbonic and trithiocarbonic acids and of orthophosphoric and sulfuric acids with Lewis acids and Lewis bases are compared. Acylium, perfluoroacylium, thioacylium, and even sulfonylium ions are obtainable with Lewis acids. It is possible by conductivity measurements and by electronic and above all IR spectroscopic investigations to determine whether the 1:1 adducts of acid halides and Lewis compounds are acylium or sulfonylium salts or donor-acceptor complexes. In the reaction with Lewis bases, the halogen atom in the acid halide is replaced by the electron donor, generally with formation of nonpolar molecular compounds or complexes.  相似文献   

5.
The heterolytic cleavage of dihydrogen constitutes the hallmark reaction of frustrated Lewis pairs (FLP). While being well-established for planar Lewis acids, such as boranes or silylium ions, the observation of the primary H2 splitting products with non-planar Lewis acid FLPs remained elusive. In the present work, we report bis(perfluoro-N-phenyl-ortho-amidophenolato)silane and its application in dihydrogen activation to a fully characterized hydridosilicate. The strict design of the Lewis acid, the limited selection of the Lewis base, and the distinct reaction conditions emphasize the narrow tolerance to achieve this fascinating process with a tetrahedral Lewis acid.  相似文献   

6.
ZnHZSM-5上脱氢环化芳构化过程的探讨   总被引:1,自引:0,他引:1  
以正己烷、环己烷、甲基环戊烷、1-己烯和环己烯等分子探针反应,考察了单B酸型HZSM-5、Zn-L酸型ZnNaZSM-5和双中心型ZnHZSM-5(B酸和Zn-L酸)催化剂的性能,探讨了B酸中心和Zn-L酸中心在芳构化过程中的作用.实验结果表明,B酸中心有利于环化,L酸中心有利于脱氢芳构化.单具B酸或Zn-L酸中心催化剂上,直链烃分子的芳构化性能较差,当两种中心同时存在时,双功能互相促进,加快芳构化过程.文中还对C6分子脱氢环化芳构化过程进行了讨论  相似文献   

7.
Starting with diboranes with two electron-rich bridging bicyclic guanidinate substituents, we report in this work the rational synthesis of new dicationic symmetrically- and unsymmetrically-substituted diboranes in SN1-type substitution reactions in which triflato or bromo substituents are replaced by neutral Lewis bases. The scope of such substitution reactions and their rate are analyzed with different pyridine derivatives of variable Lewis basicity. The first substitution step, leading to a monocationic diborane with one anionic substituent (triflate or bromide) and one neutral Lewis base, proceeds much faster than the second substitution step leading to a dicationic diborane with two neutral Lewis bases. The different time scales for the substitution steps could be used to conveniently synthesize in one-pot reactions several dicationic, unsymmetrically-substituted diboranes with two different neutral Lewis bases.  相似文献   

8.
Lewis acid–base pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metal-based catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redox-active metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transition-metal or rare-earth-metal compounds with the Lewis acid B(C6F5)3. It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.  相似文献   

9.
Bending the planar trigonal boron center of triphenylborane by connecting its aryl rings with carbon or phosphorus linkers gave access to a series of 9‐boratriptycene derivatives with unprecedented structures and reactivities. NMR spectroscopy and X‐ray diffraction of the Lewis adducts of these non‐planar boron Lewis acids with weak Lewis base revealed particularly strong covalent bond formation. The first Lewis adduct of a trivalent boron compounds with the Tf2N? anion illustrates the unrivaled Lewis acidity of these species. Increasing the pyramidalization of the boron center and using a cationic phosphonium linker resulted in an exceptional enhancement of Lewis acidity. Introduction of a phosphorus and a boron atom at each edge of a triptycene framework, allowed access to new bifunctional Lewis acid‐base 9‐phospha‐10‐boratriptycenes featuring promising reactivity for the activation of carbon‐halogen bonds.  相似文献   

10.
The thermal or Lewis acid-catalysed ene cyclisation of a variety of 4-aza-1,7-dienes afforded 3,4-disubstituted or 3,4,5-trisubstituted piperidines. Activation of the enophile with a single ester facilitated a thermal ene cyclisation, although the reaction was not amenable to Lewis acid catalysis. With other activating groups on the enophile it was found that Lewis acid catalysis was facile, although there was a fine balance between the desired ene cyclisation and the competing hetero-Diels-Alder reaction, with the product distribution being influenced by the activating group on the enophile, the nature of the ene component, and the Lewis acid used. Activation of the enophile with an oxazolidinone function facilitated Lewis acid-catalysed cyclisation to afford mixtures of ene and hetero-Diels-Alder products. Activating the enophile with two ester groups gave a substrate that underwent a very facile ene cyclisation catalysed by MeAlCl(2) to give the corresponding trans 3,4-disubstituted piperidines with diastereomeric ratios of >200 : 1.  相似文献   

11.
The radical polymerization of methyl methacrylate (MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system. Compared with the polymerization produced in the presence of single Lewis acids, AlCl3 or FeCl2, the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity (mm = 50%). The molecular weight and polydispersity of PMMA in the presence of Lewis acids were similar with those in the absence of Lewis acids, although Lewis acids decelerate the polymerization of MMA. The effects of the Lewis acids were greater in a solvent with a lower polarity. A possible stereocontrol mechanism of the polymerization was proposed. The Lewis acid composite of AlCl3-FeCl2 readily formed a complex with growing species. These complexes possessed apparent bulkiness that changes the direction of monomer addition to the growing radical center.  相似文献   

12.
The regio- and stereoselectivity of the 1,3-dipolar cycloaddition reactions of C-aryl-N-alkylaldonitrones (1a-e) with some alkenes were found to be affected significantly by the addition of Lewis acid. The rate of the reaction was also affected by adding the Lewis acid. In the reactions using allyl alcohol as a dipolarophile an addition of Lewis acid caused a remarkable acceleration of the reaction and a great change in the stereoselectivity. In the reactions using ethyl acrylate as a dipolarophile the regioselectivity was reversed whether the reaction was performed in the presence or the absence of Lewis acid; i.e. isoxazolidine-5-carboxylates were obtained mainly in the absence of Lewis acid although isoxazolidine-4-carboxylates were obtained mainly in the presence of Lewis acid. When the reaction of C,N-diarylaldonitrones (1k, 1m, 1n) with ethyl acrylate was carried out in the presence of Lewis acid, the cleavage of the N-O bond of the cycloadducts giving gamma-aminoalcohols was also observed besides a reverse phenomenon of regioselectivity.  相似文献   

13.
Three synthetic methods towards semi-planar triarylboranes with two aryl rings connected by a methylene bridge have been developed. The fine-tuning of their stereoelectronic properties and Lewis acidities was achieved by introducing fluorine, methyl, methoxy, n-butyl and phenyl groups either at their exocyclic or bridged aryl rings. X-ray diffraction analysis and quantum-chemical calculations provided quantitative information on the structural distortion experienced by the near planar hydro-boraanthracene skeleton during the association with Lewis bases such as NH3 and F. Though the methylene bridge between the ortho-positions of two aryl rings of triarylboranes decreased the Gibbs free energies of complexation with small Lewis bases by less than 5 kJ mol−1 relative to the classical Lewis acid BAr3, the steric shielding of the CH2 bridge is sufficient to avoid the formation of Lewis adducts with larger Lewis bases such as triarylphosphines. A newly synthesized spirocyclic amino-borane with a long intramolecular B−N bond that could be dissociated under thermal process, UV-irradiation, or acidic conditions might be a potential candidate in Lewis pairs catalysis.  相似文献   

14.
The radical polymerization of methyl methacrylate(MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system.Compared with the polymerization produced in the presence of single Lewis acids,AlCl3 or FeCl2,the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity(mm=50%) .The molecular weight and polydispersity of PMMA in the presence of Lewis ...  相似文献   

15.
The reactions of phenoxyacetyl chloride with aryl imines in the presence of catalytic quantities of a silyl cinchona alkaloid and an achiral Lewis acid affords α-phenoxy-β-aryl-β-lactams. These reactions presumably proceed by way of ketene or acyl ammonium enolate intermediates. These reactions occur in a high enantioselectivity regardless of the nature of the Lewis acid, however, a high diastereoselectivity depended on the use of a hindered lanthanide complex as the Lewis acidic co-catalyst.  相似文献   

16.
Computed enthalpies of formation for various Lewis acid complexes with representative unsaturated compounds (aldehydes, imines, alkynes, and alkenes) provide a means to evaluate the applicability of a particular catalyst in a catalytic reaction. As expected, main group Lewis acids such as BX3 show much stronger complexes with heteroatoms than with carbon-carbon multiple bonds (sigma-electrophilic Lewis acids). Gold(I) and copper(I) salts with non-nucleophilic anions increase the relative strength of coordination to the carbon-carbon multiple bonds (pi-electrophilic Lewis acids). As representative examples for the use of sigma-electrophilic Lewis acids in organic synthesis, the Lewis acid mediated allylation reactions of aldehydes and imines with allylic organometallic reagents which give the corresponding homoallyl alcohols and amines, respectively, are mentioned. The allylation method is applied for the synthesis of polycyclic ether marine natural products, such as hemibrevetoxin B, gambierol, and brevetoxin B. As representative examples for the use of pi-electrophilic Lewis acids in organic synthesis, the Zr-, Hf-, or Al-catalyzed trans-stereoselective hydro- and carbosilylation/stannylation of alkynes is mentioned. This method is extended to sigma-pi chelation controlled reduction and allylation of certain alkynylaldehydes. Gold- and copper-catalyzed benzannulation of ortho-alkynylaldehydes (and ketones) with alkynes (and alkenes) is discovered, which proceeds through the reverse electron demand Diels-Alder type [4+2] cycloaddition catalyzed by the pi-electrophilic Lewis acids. This reaction is applied for the short synthesis of (+)-ochromycinone. Palladium and platinum catalysts act as a sigma- and/or pi-electrophilic catalyst depending on substrates and reaction conditions.  相似文献   

17.
New heterocyclic derivatives of 9‐azajulolidine have been synthesized and characterized with respect to their nucleophilicity and Lewis basicity. The Lewis basicity of these bases as quantified through their theoretically calculated methyl‐cation affinities correlate well with the experimentally measured reaction rates for addition to benzhydryl cations. All newly synthesized pyridines show exceptional catalytic activities in benchmark acylation reactions, which correlate only poorly with Lewis basicity or nucleophilicity parameters. A combination of Lewis basicity with charge and geometric parameters in the framework of a three‐component quantitative structure–activity relationship (QSAR) model is, however, highly predictive.  相似文献   

18.
A series of new types of sulfur‐bridged Lewis acids were synthesized. The ligands that contained the sulfoxide or sulfone as the joint moieties of two phenols were found to quantitatively give Lewis acids. These obtained Lewis acids also have good discrimination properties of some epoxides. The reaction prop erties of the Lewis acids were studied using the rearrangement of the epoxides to carbonyl compounds.  相似文献   

19.
The first catalytic enantioselective Reissert reaction of pyridine derivatives that affords products with excellent regio- and enantioselectivity is described. The key for success is the development of new Lewis acid-Lewis base bifunctional asymmetric catalysts containing an aluminum as a Lewis acid and sulfoxides or phosphine sulfides as a Lewis base. These reactions are useful for the synthesis of a variety of chiral piperidine subunits, and catalytic enantioselective formal synthesis of CP-293,019, a selective D4 receptor antagonist, was achieved. Preliminary mechanistic studies indicated that both sulfoxides and phosphine sulfides can activate TMSCN as a Lewis base. In addition, the sulfoxides with appropriate stereochemistry might stabilize a highly enantioselective bimetallic complex (a presumed active catalyst) through internal coordination to aluminum.  相似文献   

20.
An efficient synthesis of a valuable intermediate of coenzyme Q(10) by microwave-assisted Lewis acidic ionic liquid (IL)-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF(4)-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF(4)-AlCl(3). The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF(4)-ZnCl(2) showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds). This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ(10) on an industrial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号