首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laser-induced fluorescence spectra of jet-cooled benzo-18-crown-6 (B18C6) and dibenzo-18-crown-6 (DB18C6) exhibit a number of vibronic bands in the 35 000-37 000 cm(-1) region. We attribute these bands to monomers and hydrated clusters by fluorescence-detected IR-UV and UV-UV double resonance spectroscopy. We found four and two conformers for bare B18C6 and DB18C6, and the hydration of one water molecule reduces the number of isomers to three and one for B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1), respectively. The IR-UV spectra of B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) suggest that all isomers of the monohydrated clusters have a double proton-donor type (bidentate) hydration. That is, the water molecule is bonded to B18C6 or DB18C6 via two O-H[dot dot dot]O hydrogen bonds. The blue shift of the electronic origin of the monohydrated clusters and the quantum chemical calculation suggest that the water molecule in B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) prefers to be bonded to the ether oxygen atoms near the benzene ring.  相似文献   

2.
A new compound, aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(perchlorato-O)potassium perchlorate ([K(DB18C6)(H2O)]+ · [K(ClO4)(DB18C6)] · ClO 4 ? ; compound I) is synthesized and studied by X-ray crystallography. The crystals are triclinic: a = 9.050 Å, b = 9.848 Å, c = 26.484 Å, α = 82.87°, β = 84.16°, γ = 77.93°, Z = 2, space group P $\bar 1$ . The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.058 for 5960 independent reflections (CAD4 diffractometer, λMoK α radiation). A complex cation [K(DB18C6)(H2O)]+ and a complex molecule [K(ClO4)(DB18C6)] are of the host-guest type; they are linked into a dimer through two K+ → π(C) bonds formed by one of the two K+ cations with two C atoms of the benzene ring of the DB18C6 ligand from the adjacent complex. Both DB18C6 ligands in I have a butterfly conformation with approximate symmetry C 2v .  相似文献   

3.
Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkaline earth metal divalent cations (A(2+)-DB18C6, A = Ba, Sr, Ca, and Mg) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. Each spectrum exhibits the lowest energy absorption band in the wavenumber region of 35?400-37?800 cm(-1), which is tentatively assigned as the origin of the S(0)-S(1) transition of A(2+)-DB18C6. This origin band shows a red shift as the size of the metal dication increases from Mg(2+) to Ba(2+). The binding energies of the metal dications to DB18C6 at the S(0) state were calculated at the lowest energy structures optimized by the density functional theory and employed with the experimental energies of the origin bands to estimate the binding energies at the S(1) state. We suggest that the red shifts of the origin bands arise from the decrease in the binding energies of the metal dications at the S(1) state by nearly constant ratios with respect to the binding energies at the S(0) state, which decrease with increasing size of the metal dication. This unique relationship of the binding energies between the S(0) and S(1) states gives rise to a linear correlation between the relative shift of the origin band of A(2+)-DB18C6 and the binding energy of the metal dication at the S(0) state. The size effects of the metal cations on the properties of metal-DB18C6 complex ions are also manifested in the linear plot of the relative shift of the origin band as a function of the size to charge ratio of the metal cations, where the shifts of the origin bands for all DB18C6 complexes with alkali and alkaline earth metal cations are fit to the same line.  相似文献   

4.
A new compound, dibenzo-18-crown-6 diaqua(dibenzo-18-crown-6)potassium triiodide [K(Db18C6)(H2O)2)+ · I3 · Db18C6 (I), is synthesized and studied by X-ray crystallography. The crystals of compound I are orthorhombic: a = 22.065 ?, b = 22.140 ?, c = 9.433 ?, Z = 4, space group Pccn. Structure I is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.098 for all 5974 unique reflections. Structure I contains the following asymmetric units: a half of the I3 centrosymmetric anion and two halves of the mixed equally average [K(Db18C6)(H2O)2]+ host—guest complex cation (a) and a free Db18C6 molecule, each stacked on the axes 2 of the perpendicularly averaged plane of the eighteen-membered macroheterocycle. In complex I, both Db18C6 molecules (a and b) have a “butterfly” conformation with approximate symmetry C 2v . Original Russian Text ? A.N. Chekhlov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 516–520.  相似文献   

5.
Compounds of the compositions [2(18-crown-6)6(H2O)2(C2H4Cl2){Pt2+(C2H4)}(Pt2Cl10)2–], [4(18-crown-6)2(OH3)+2(OH2)2(NH3)(Pt2Cl10)2–], [(dibenzo-18-crown-6)6(H2O){Pt2+(C2H4)}(Pt2Cl10)2–], and [4(dibenzo-18-crown-6)2(OH3)+2(OH2)2(NH3)Pt2Cl10)2–] were prepared by reactions of H2PtCl6 with 18-crown-6 and dibenzo-18-crown-6.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 10, 2004, pp. 1593–1599.Original Russian Text Copyright © 2004 by Guseva, Busygina, Khasanshin, Polovnyak, Yarkova, Yusupov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

6.
New mixed complex compound aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(tetrachlorocuprato(II)-Cl)potassium, [K(CuCl4)(Db18C6)]? · [K(Db18C6)(H2O)]+, is synthesized and its crystal structure is studied by the method of x-ray structural analysis. The structure includes two independent complex ions, both of guest-host type: two cations K+ are located in the respective cavities of the Db18C6 crown-ligand (one in each) and each is coordinated by all its six O atoms and one Cl atom of the anion-ligand [CuCl4]2? or O atom of the ligand water molecule. Coordination of these two K+ cations is completed to hexagonal pyramidal one by formation by each of unusually weak coordination bond K+π(\(C\dddot - C\)) with two C atoms of respective benzene ring in the neighboring Db18C6 ligand. In this crystal structure the complex anions and cations form dual infinite chains via these coordination bonds and interionic O-H?Cl hydrogen bonds.  相似文献   

7.
8.
ESR has been applied to the interactions of [K(DBC)]3[Co(CN)5], in which DBC is dibenzo-18-crown-6, in methanol solution with triphenylphosphine, pyridine, and triethylamine. The ESR spectra are described for the paramagnetic [(NC)5CoB]3– adducts, where B is triphenylphosphine or pyridine.Translated from Teoreticheskaya i Éxperimental'naya Khimiya, Vol. 25, No. 2, pp. 234–237, March–April, 1989.  相似文献   

9.
Complete structural characterization of dibenzo-18-crown-6·2 CH3NO2 and dibenzo-18-crown-6·2 CH3CN have been carried out, including location and refinement of the methyl hydrogen atoms. Dibenzo-18-crown-6·2 CH3NO2 is monoclinic,P21/c, with (at –150°C)a=9.573(2),b=14.636(2),c=33.471(7) Å, =93.77(2)°, andD calc=1.37 g cm–3 forZ=8. Interactions between the solvent methyl groups and the crown ethers and other solvent nitro groups associate the 1 : 2 complexes into polymeric chains alongb. The acetonitrile adduct exists as discreet 1 : 2 complexes in the solid state with C–H...O interactions exlusively to the ether. This complex is triclinic,P 1, with (at –150°C)a=9.458(6),b=9.570(5),c=14.404(5) Å, =73.18(4), =79.85(5), =66.82(6)°, andD calc=1.28 g cm–3 forZ=2. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82070 (22 pages).For part 4, see reference [1].  相似文献   

10.
The extraction of rare-earth elements (REE) by alkylated crown ethers (dibenzo-and dicyclohexano-18-crown 6; DB18C6 and DCH18C6) from acid solutions in the chloroform-water system is studied. The extraction of the REE with DCH18C6 and its alkylated derivatives in the presence of trichloroacetic acid (TCA) is far more efficient than the extraction with DB18C6 and its alkylated derivatives or when nitric or acetic acid is used instead of TCA. The distribution coefficients for the cerium metals are far higher than for the yttrium metals. The metal: crown ether ratio in the extracted complex in all cases is 1:1.  相似文献   

11.
12.
13.
14.
Gomis DB  Jimeno SA  Sanz-Medel A 《Talanta》1982,29(9):761-765
A method is described for the direct spectrophotometric determination of micro-amounts of niobium by extraction into a benzene solution of dibenzo-18-crown-6 (L) from 3M hydrochloric acid containing potassium thiocyanate. The molar absorptivity of the extracted complex is 3.85 +/- 0.03 x 10(4) 1.mole(-1).cm(-1) (relative standard deviation 0.8%). Co-ordinatively unsaturated complexes of the type [NbO(SCN)(3)](2)L and NbO(SCN)(3)L are extracted, along with ion-pairs, especially when small amounts of L are used for extraction. The ion-pair complex [NbOCl(2)(SCN)(3)][(LK)(2)] seems to be the main species formed in the organic phase.  相似文献   

15.
16.
Interaction of dibenzo-18-crown-6 (DBC) with H 3O (+) (HP) in nitrobenzene- d 5 and dichloromethane- d 2 was studied by using (1)H and (13)C NMR spectra and relaxations, FTIR spectra, and quantum chemical DFT calculations. NMR shows that the DBC*HP complex is in a dynamic equilibrium with the reactants, the equilibrium constant K being 0.66 x 10 (3), 1.16 x 10 (4), and 1.03 x 10 (4) L x mol (-1) in CD 2Cl 2, nitrobenzene, and acetonitrile, respectively. The complex appears to have a C 2 v symmetry in NMR, but FTIR combined with DFT normal mode calculations suggest that such high symmetry is only apparent and due to exchange averaging of the structure. FTIR spectra as well as energy-optimized DFT calculations show that the most stable state of the complex in solution is that with three linear hydrogen bonds of HP with one CH 2-O-CH 2 and two Ar-O-Ar oxygen atoms. The structure is similar to that found in solid state but adopts a somewhat different conformation in solution. The dynamics of exchange between bound and free DBC was studied by NMR transverse relaxation. It was found to be too fast to give reproducible results when measured with the ordinary CPMG sequence or its variant DIFTRE removing residual static dipolar interaction, but it could be established by rotating-frame measurements with high intensity of the spin-lock field. The correlation time of exchange was found to be 5.6 x 10 (-6) and 3.8 x 10 (-6) s in dichloromethane and nitrobenzene, respectively. Such fast exchange can be explained by cooperative assistance of present water molecules.  相似文献   

17.
The reactions of 4-nitro- and pentafluorophenols with C5F5N, 4-ArOC5F4N and 2,4-(ArO)2C5F3N (Ar = 4-NO2C6H4, C6F5) in the presence of KF and catalitic amounts of 18-crown-6- -ether at various temperatures have been investigated. The leaving ability of the C6F5O-group is shown to be higher than that of the 4-NO2C6H4O-group in the reactions of 4-ArOC5F4N, 2,4-(ArO)2C5F3N and 2,4,6-(ArO)3C5F2N with F?-anion, which is in agreement with the order of the basicity of anions (C6F5O?<4-NO2C6H4O?). The reaction pathways of pentafluoropyridine with ArO?-anions are discussed.  相似文献   

18.
A new complex compound (dibenzo-18-crown-6)(iodo)(trichlorometane)potassium was obtained. Its crystal structure was studied by X-ray structural analysis. The complex molecule is built by the “guest-host” type: its K+ cation is in the crown ligand hollow and is coordinated via its all six O atoms, and also via the iodine ligand I and one Cl atom of the ligand CHCl3 molecule. The coordination polyhedron of this K+ cation is a slightly distorted hexagonal bipyramid. In the crystal structure the complex molecules are connected in infinite chains by intercomplex hydrogen bonds Cl3C-H?I i between the ligand molecule CHCl3 and the iodine ligand of a neighboring complex molecule.  相似文献   

19.
The structure of dibenzo-18-crown-6-ether (DB18C6) and its hydrated clusters has been investigated in a supersonic jet. Two conformers of bare DB18C6 and six hydrated clusters (DB18C6-(H(2)O)(n)) were identified by laser-induced fluorescence, fluorescence-detected UV-UV hole-burning and IR-UV double-resonance spectroscopy. The IR-UV double resonance spectra were compared with the IR spectra obtained by quantum chemical calculations at the B3LYP/6-31+G* level. The two conformers of bare DB18C6 are assigned to "boat" and "chair I" forms, respectively, among which the boat form is dominant. All the six DB18C6-(H(2)O)(n) clusters with n = 1-4 have a boat conformation in the DB18C6 part. The water molecules form a variety of hydration networks in the boat-DB18C6 cavity. In DB18C6-(H(2)O)(1), a water molecule forms the bidentate hydrogen bond with the O atoms adjacent to the benzene rings. In this cluster, the water molecule is preferentially hydrogen bonded from the bottom of boat-DB18C6. In the larger clusters, the hydration networks are developed on the basis of the DB18C6-(H(2)O)(1) cluster.  相似文献   

20.
The mass spectra of dibenzo-18-crown-6 polyether and three of its nitro derivatives have been determined. The fragmentation pathways of all the compounds suggested that ring contraction was taking place. The molecular ion of the polyether dissociated by three competing processes, mainly through loss of C2H4O units. The molecular ions of the three derivatives dissociated with ring contraction, as well as through losses of O, No and NO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号