首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

2.
A family of cesium aryloxides [Cs(OAr)](n) were synthesized and structurally characterized from the reaction of 1:1 or 1:excess stoichiometry of Cs(0) and the appropriate alkyl-substituted phenol: 2-alkylphenol [alkyl = methyl (H-oMP), isopropyl (H-oPP), and tert-butyl (H-oBP)] and 2,6-dialkylphenol [alkyl = methyl (H-DMP), isopropyl (H-DIP), tert-butyl (H-DBP), and phenyl (H-DPhP)]. The products were structurally identified as [Cs(oMP)(H-oMP)(2)](n) (1), [Cs(5)(oPP)(5)](n) (2), [Cs(4)(oBP)(4)(H-oBP)(6)](n) (3x, shown), [Cs(3)(DMP)(3)](n) (4), [Cs(2)(DIP)(2)](n) (5), [Cs(DIP)(H-DIP)](n) (5x), and [Cs(DPhP)](n) (7). Compounds 1-7 were found to adopt complex polymeric structures employing π interactions from the neighboring pendant phenoxide ligands. The solution behavior of these compounds was studied using solution (133)Cs NMR spectroscopy, and for each compound, a single (133)Cs NMR resonance was observed, with chemical shift values found to be strongly solvent-dependent. This implies that monomeric cesium salt species involving solvent interactions exist in solution.  相似文献   

3.
A series of sterically varied titanium alkoxides [[Ti(OR)(4)](n)(), n = 4, OR = OCH(2)CH(3) (OEt); n = 1, OCH(CH(3))(2) (OPr(i)); n = 2, OCH(2)C(CH(3))(3) (ONep); n = 1, OC(6)H(3)(CH(3))(2)-2,6 (DMP)] were reacted with a series of thallium alkoxides [[Tl(OR)](x) (x = 4, OR = OEt, ONep; n = infinity, DMP)]. The resultant products of the [Tl(mu(3)-OEt)](4)-modified [Ti(OR)(4)](n)() (OR = OEt, OPr(i), ONep) were found by X-ray analysis to be Tl(4)Ti(2)(mu-O)(mu(3)-OEt)(8)(OEt)(2) (1), Tl(4)Ti(2)(mu-O)(mu(3)-OPr(i))(5)(mu(3)-OEt)(3)(OEt)(2) (2), and TlTi(2)(mu(3)-OEt)(2)(mu-OEt)(mu-ONep)(2)(ONep)(4) (3), respectively. The reaction of [Tl(mu(3)-OEt)](4), 12HOEt, and 4[Ti(mu-ONep)ONep)(3)](2) to generate 3 in a higher yield resulted in the isolation of TlTi(2)(mu(3)-OEt)(mu(3)-ONep)(mu-OEt)(mu-ONep)(2)(ONep)(4) (4). Compounds 1 and 2 possess an octahedral (Oh) arrangement of two Ti and four Tl metal atoms around a mu-O central oxide atom (the Tl-O distance is too long to be considered a bond). For both compounds, each Ti atom adopts a distorted Oh geometry with one terminal OEt ligand. The Tl atoms are formally 4-coordinated, adopting a distorted pyramidal geometry using four mu(3)-OR (OR = OEt or OPr(i)) ligands to complete their coordination sphere. The Tl atoms reside approximately 1.4 A below the basal plane of oxygens. In contrast to these structures, both 3 and 4 utilize ONep ligands and display reduced oligomerization yielding trinuclear complexes without oxo formation. The two Ti cations are Oh, and the single Tl cation is in a formal distorted pyramidal (PYD) arrangement. If the lone pair of the Tl cations are considered in the geometry, each Tl adopts a square base pyramidal geometry. Two terminal ONep ligands are bound to each Ti with the remainder of the molecule consisting of mu(3)- and mu-ONep ligands. The reaction of [Tl(mu(3)-ONep)](4) with two equivalents of [Ti(mu-ONep)(ONep)(3)](2) also led to the isolation of the homoleptic trinuclear complex TlTi(2)(mu(3)-ONep)(2)(mu-ONep)(3)(ONep)(4) (5) which is analogous in structure to the mixed ligand species of 3 and 4. Each Ti is Oh coordinated with six ONep ligands, and the single Tl is PYD bound by ONep ligands. A further increase in the steric bulk of the pendant ligands, using [Tl(mu-DMP)](infinity) and [Ti(mu-ONep)(ONep)(3)](2), resulted in a further decrease in the nuclearity yielding the dinuclear species TlTi(mu-DMP)(mu-ONep)(DMP)(ONep)(2) (6). For 6, the two metals are bound by a mu-ONep and a mu-DMP ligand. The Tl metal center was solved in a bent geometry while the Ti adopted a distorted trigonal bipyramidal (TBP) geometry using three ONep and two DMP ligands to fill its coordination sphere. Further increasing the steric bulk of the ancillary ligands using Ti(DMP)(4) and [Tl(mu-DMP)](infinity) led to the formation of [Tl(+)][(-)(eta(2-3)-DMP)Ti(DMP)(4)] (7). The Ti metal center is in a TBP geometry, and the "naked" Tl cation resides unencumbered by solvent molecules but was found to have a strong pi-interaction with four DMP ligands of neighboring Ti(DMP)(5)(-) anions. For this novel set of compounds, (205)Tl NMR spectroscopy was used to investigate the solution behavior of these compounds. Multiple (205)Tl resonances were observed for the solution spectra of the crystalline material of 1-6, and a broad singlet was observed for 7. The large number of minor resonances noted for these compounds was attributed to sensitivity of the Tl cation based on small variations due to ligand rearrangement. However, the major resonance noted in the (205)Tl NMR solution spectra of 1-7 are in agreement with their respective solid-state structures.  相似文献   

4.
Using either an ammoniacal route, the reaction between DyCl3, Na0, and HOR in liquid ammonia, or preferentially reacting Dy(N(SiMe3)2)3 with HOR in a solvent, we isolated a family of dysprosium alkoxides as [Dy(mu-ONep)2(ONep)]4 (1), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(THF)]2(mu-ONep) (2), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(py)]2(mu-ONep) (3), [Dy3(mu3-OBut)2(mu-OBut3(OBut)4(HOBut)2] (4), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(THF)2] (5), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(py)2] (6), (DMP)Dy(mu-DMP)4[Dy(DMP)2(NH3)]2 (7), [Dy(eta6-DMP)(DMP)2]2 (8), Dy(DMP)3(THF)3 (9), Dy(DMP)3(py)3 (10), Dy(DIP)3(NH3)2 (11), [Dy(eta6-DIP)(DIP)2]2 (12), Dy(DIP)3(THF)2 (13), Dy(DIP)3(py)3 (14), Dy(DBP)3(NH3) (15), Dy(DBP)3 (16), Dy(DBP)3(THF) (17), Dy(DBP)3(py)2 (18), [Dy(mu-TPS)(TPS2]2 (19), Dy(TPS)3(THF)3 (20), and Dy(TPS)3(py)3 (21), where ONep = OCH2CMe3, OBut) = OCMe3, DMP = OC6H3(Me)(2)-2,6, DIP = OC6H3(CHMe2)(2)-2,6, DBP = OC6H3(CMe3)(2)-2,6, TPS = OSi(C6H5)3, tol = toluene, THF = tetrahydrofuran, and py = pyridine. We were not able to obtain X-ray quality crystals of compounds 2, 8, and 9. The structures observed and data collected for the Dy compounds are consistent with those reported for its other congeners. A number of these precursors were used as Dy dopants in Pb(Zr0.3Ti0.7)O3 (PZT 30/70) thin films, with compound 12 yielding the highest-quality films. The resulting Pb0.94Dy0.04(Zr0.3Ti0.7)O3 [PDyZT (4/30/70)] had similar properties to PZT (30/70), but showed substantial resistance to polarization reversal fatigue.  相似文献   

5.
A series of tin(II) amide alkoxides ([(OR)Sn(NMe(2))](n)) and tin(II) alkoxides ([Sn(OR)(2)](n)) were investigated as precursors for the production of tin oxide (SnO(x)) nanowires. The precursors were synthesized from the metathesis of tin dimethylamide ([Sn(NMe(2))(2)](2)) and a series of aryl alcohols {H-OAr = H-OC(6)H(4)(R)-2: R = CH(3) (H-oMP), CH(CH(3))(2) (H-oPP), C(CH(3))(3) (H-oBP)] or [H-OC(6)H(3)(R)(2)-2,6: R = CH(3) (H-DMP), CH(CH(3))(2) (H-DIP), C(CH(3))(3) (H-DBP)]}. The 1:1 products were all identified as the dinuclear species [(OAr)Sn(μ-NMe(2))](2) where OAr = oMP (1), oPP (2), oBP (3), DMP (4), DIP (5), DBP (6). The 1:2 products were identified as either a polymer ([Sn(μ-OAr)(2)](∞) (where OAr = oMP (7), oPP (8)), dinuclear [(OAr)Sn(μ-OAr)](2) (where OAr = oBP (9), DMP (10) or DIP/HNMe(2) (11)), or mononuclear [Sn(DBP)(2)] (12) complexes. These novel families of compounds (heteroleptic 1-6, and homoleptic 7-12) were evaluated for the production of SnO(x) nanowires using solution precipitation (SPPT; oleylamine/octadecene solvent system) or electrospinning (ES; THF solvent) processing conditions. The SPPT route that employed the heteroleptic precursors yielded mixed phases of Sn(o):romarchite [1 (100:0); 2 (80:20); 3 (68:32); 4 (86:14); 5 (66:35); 6 (88:12)], with a variety of spherical sized particles [1 (350-900 nm); 2 (150-1200 nm); 3 (250-950 nm); 4 (20-180 nm); 5 (80-400 nm); 6 (40-200 nm)]. For the homoleptic precursors, similar phased [7 (80:20); 8 (23:77); 9 (15:85); 10 (34:66); 11 (77:23); 12 (77:23)] spherical nanodots were isolated [7 (50-300 nm); 8: (irregular); 10 (200-800 nm); 11 (50-150 nm); 12 (50-450 nm)], except for 9 which formed polycrystalline rods [Sn(o):romarchite (15:85)] with aspect ratios >100. From ES routes, the heteroleptic species were found to form 'tadpole-shaped' materials whereas the homoleptic species formed electrosprayed nanodots. The one exception noted was for 7, where, without use of a polymer matrix, nanowires of Sn(o), decorated with micron sized 'balls' were observed. Due to the small amount of material generated, PXRD patterns were inconclusive to the identity of the generated material; however, cyclic voltammetry on select samples was used to tentatively identify the final Sn(o) (from 7) with the other sample identified as SnO(x) (from 1).  相似文献   

6.
A new family of iron(II) aryloxide [Fe(OAr)(2)(py)(x)] precursors was synthesized from the alcoholysis of iron(II) mesityl [Fe(Mes)(2)] in pyridine (py) using a series of sterically varied 2-alkyl phenols (alkyl = methyl (H-oMP), isopropyl (H-oPP), tert-butyl (H-oBP)) and 2,6-dialkyl phenols (alkyl = methyl (H-DMP), isopropyl (H-DIP), tert-butyl (H-DBP), phenyl (H-DPhP)). All of the products were found to be mononuclear and structurally characterized as [Fe(OAr)(2)(py)(x)] (x = 3 OAr = oMP (1), oPP (2), oBP (3), DMP (4), DIP (5); x = 2 OAr = DBP (6), DPhP (7)). The use of tris-tert-butoxysilanol (OSi(OBu(t))(3) = TOBS) led to isolation of [Fe(TOBS)(2)(py)(2)] (8). The new Fe(OAr)(2)(py)(x) (1-6) were found, under solvothermal conditions, to produce nanodots identified by PXRD as the γ-maghemite phase. The model precursor 3 and the nanoparticles 6n were evaluated using electrochemical methods. Cyclic voltammetry for 3 revealed multiple irreversible oxidation peaks, which have been tentatively attributed to the loss of alkoxide ligand coupled with the deposition of a solid Fe-containing coating on the electrode. This coating was stable out to the voltage limits for the acetonitrile solvent.  相似文献   

7.
Two types of Ln(II)-Co(4) isocarbonyl polymeric arrays, [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3; x = 0, 1) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4), were prepared and structurally characterized. Transmetalation involving Ln(0) and Hg[Co(CO)(4)](2) in Et(2)O yields [(Et(2)O)(3)Ln[Co(4)(CO)(11)]]( infinity ) (1, Ln = Yb; 2, Ln = Eu). Dissolution of the solvent-separated ion pairs [Ln(THF)(x)()][Co(CO)(4)](2) (Ln = Yb, x = 6; Ln = Eu) in Et(2)O affords [(Et(2)O)(2)(THF)Yb[Co(4)(CO)(11)]]( infinity ) (3) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4). In these reactions, oxidation and condensation of the [Co(CO)(4)](-) anions result in formation of the new tetrahedral cluster [Co(4)(CO)(11)](2)(-). The two types of Ln(II)-Co(4) compounds contain different isomers of [Co(4)(CO)(11)](2)(-), and, consequently, the structures of the infinite isocarbonyl networks are distinct. The cluster in [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3) possesses pseudo C(3)(v)() symmetry (an apical Co, three basal Co atoms; one face-bridging, three edge-bridging, seven terminal carbonyls) and connects to Ln(II) centers through eta(2),micro(4)- and eta(2),micro(3)-carbonyls to generate a 2-D puckered sheet. In contrast, [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4) incorporates a C(2)(v)() symmetric cluster (two unique Co environments; two face-bridging, one edge-bridging, eight terminal carbonyls), and isocarbonyl linkages (eta(2),micro(4)-carbonyls) to Eu(II) atoms create a 1-D zigzag chain. Complexes 1-4 contain the first reported eta(2),micro(4)-CO bridges between a Ln and a transition-metal carbonyl cluster. Infrared spectroscopic studies revealed that the isocarbonyl associations to Ln(II) persist in solution. The solution structure and dynamic behavior of the [Co(4)(CO)(11)](2)(-) cluster in 1 was investigated by variable-temperature (59)Co and (13)C NMR spectroscopies.  相似文献   

8.
The ion-contact complexes [{(eta(5)-Cp)(2)Mn(eta(2):eta(5)-Cp)K}(3)]x0.5 THF (1x0.5 THF) and [{(eta(2)-Cp)(2)(eta(2);eta(5)-MeCp)MnK(thf)}]x2 THF (2x2 THF) and ion-separated complexes [Mg(thf)(6)][(eta(2)-Cp)(3)Mn](2) (3), [Mg(thf)(6)][(eta(2)-Cp)(eta(2)-MeCp)(2)Mn)](2)x0.5 THF (4x0.5 THF), [Mg(thf)(6)][(eta(2)-MeCp)(3)Mn)](2)x0.5 THF (5x0.5 THF) and [Li([12]crown-4)](5)[(eta-Cp)(3)Mn](5) (6) (Cp=C(5)H(5), CpMe=C(5)H(4)CH(3)), have been prepared and structurally characterised. The effects of varying the Cp and CpMe ligands in complexes 1-5 have been probed by variable-temperature magnetic susceptibility measurements and EPR spectroscopic studies.  相似文献   

9.
Starting material KN(H)C(6)H(3)-2,6-F(2) was prepared via a transamination reaction from KNH(2) and 2,6-F(2)C(6)H(3)NH(2) in THF and crystallized from 1,4-dioxane (diox) as the three-dimensional polymer [(diox)(1.5)K{N(H)-2,6-F(2)C(6)H(3)}.diox(0.5)](infinity) (1). The metathesis reaction of (THF)(4)CaI(2) with KN(Me)Ph in THF yields monomeric (THF)(4)Ca[N(Me)Ph](2) (2) with a nearly linear N-Ca-N moiety of 179.84(8) degrees . The metathesis reaction of (THF)(4)CaI(2) with KN(H)Mes yields trinuclear (THF)(6)Ca(3)[N(H)Mes](6) (3) with a linear Ca(3) fragment and bridging 2,4,6-trimethylphenylamido groups. The reaction of 1 with (THF)(4)CaI(2) gives dinuclear (THF)(5)Ca(2)[N(H)-2,6-F(2)C(6)H(3)](4).2THF (4) with three bridging and one terminally bound 2,6-difluorophenylamide. A similar reaction of (THF)(5)SrI(2) with KN(H)-2,6-F(2)C(6)H(3) yields dinuclear (THF)(6)Sr(2)[N(H)-2,6-F(2)C(6)H(3)](3)I.THF (5) in which the iodide anion binds terminally. This iodide ligand cannot be substituted as easily by excess KN(H)-2,6-F(2)C(6)H(3). The metathesis reaction of (THF)(5)BaI(2) with KN(H)-2,6-F(2)C(6)H(3) leads to the formation of [(THF)(2)Ba{N(H)-2,6-F(2)C(6)H(3)}(2)](infinity) (6) which crystallizes as a one-dimensional polymer with bridging 2,6-difluorophenylamide anions and additional Ba-F-bonds.  相似文献   

10.
This report investigates the structural aspects of the products isolated from the reactions of a series of titanium alkoxides [[Ti(OR)4]n n = 2, OR = OCH2C(CH3)3 (ONep) (1); n = 1, OC6H3(CH3)2-2,6 (DMP) (2)] with rubidium alkoxides [[Rb(OR)]infinity where OR = (ONep) (3), (DMP) (4), and OC6H3(CH(CH3)2)2-2,6 (DIP) (5)]. The resultant double alkoxides were determined by single crystal X-ray diffraction to be [Rb(mu-ONep)4(py)Ti(ONep)]2 (6), [Rb(mu-DMP)Ti(DMP)4]infinity (7), and [Rb(mu-DMP)2(mu-ONep)2Ti(ONep)]infinity (8). Compound 1 is the previously reported dinculear species with trigonal bipyramidal Ti metal centers whereas compound 2 is a monomer with a tetrahedral Ti center. Suitable X-ray quality crystals of 3 were not isolated. Compounds 4 and 5 demonstrate extended polymeric networks with Rb coordination ranging from two to five utilizing terminal mu- and mu3-OR ligands and pi-interactions of neighboring OAr ligands. The double alkoxide 6 revealed a simple tetranuclear structure with mu-ONep acting as the bridge, terminal ONep ligands on the Ti, and one terminal py on the Rb. For 7 and 8, the pi-interaction facilitated the formation of extended polymeric systems. All complexes were further characterized by FT-IR and multinuclear NMR spectroscopy.  相似文献   

11.
Reactions of Ln(BH4)3(THF)3 (Ln = Nd, Ce) and M2dddt (M = Na, K; dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) in THF or pyridine gave, after addition of 18c6 (18-crown-6), several crystalline compounds which all contain the tris(dithiolene) Ln(dddt)3 unit. Crystals of [Na(18c6)(py)2]2[Na(18c6)(py)][Nd(dddt)3(py)].3py (1.3py) are built up from discrete mononuclear cationic and anionic species whereas crystals of {[Na(18c6)(py)2](0.5)[Na(18c6)(py)(1.5)][Na(1.5)Nd(dddt)3]}(infinity) (2) are composed of discrete [Na(18c6)(py)x]+ cations and polymeric anionic two-dimensional layers in which the Nd(dddt)3 units are linked to three neighbors by sodium atoms to form a honeycomb network. Analysis of the temperature dependence of the molar magnetic susceptibility of 2 shows that chiMT decreases from 1.63 cm3 K mol(-1) at 300 K down to 0.6 cm3 K mol(-1) at 5 K, due to the crystal-field splitting of the (4)I(9/2) free-ion state. Complexes {[Na3(18c6)(1.5)Nd(dddt)3(THF)].3THF}(infinity) (3.3THF) and {[K3(18c6)(1.5)Nd(dddt)3(py)].3py}(infinity) (4.3py) exhibit neutral polymeric layers with the Nd(dddt)3 units linked by M2(18c6) fragments. In the cerium compound {[Na2(18c6)Na(py)2Ce(dddt)3(py)].3py}(infinity) (5.3py), each Ce(dddt)3 unit is linked to two neighbors only by Na2(18c6) moieties, giving infinite zigzag chains.  相似文献   

12.
The hydrolysis reaction of K(2)(MeZn)(2)(PSitBu(3))(2) in THF/toluene solution yields the [(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)](4-) anions independent of the applied stoichiometry. If the applied molar ratio resembles the composition of the anion, [(thf)K](2)[(eta(6)-toluene)K](2)[(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)] (1) crystallizes from a mixture of THF and toluene. In the case with less water, a phosphanediylzincate moiety is bonded to this anion, and [Zn(PSitBu(3))(2)K(4)(thf)(6)](2)[(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)] (2) crystallizes. However, again the major product is 1. The same anion is also observed with larger and softer cations, and [(thf)(3)Cs(2)](2)[(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)] (3) is obtained if the cesium zincate is used in this reaction. In all of these compounds, the anion is a slightly distorted Zn(6)O(2)P(4) double-heterocubane cage with a central Zn(2)O(2) ring having Zn-O bond lengths of approximately 207 pm.  相似文献   

13.
Xu QF  Chen JX  Zhang WH  Ren ZG  Li HX  Zhang Y  Lang JP 《Inorganic chemistry》2006,45(10):4055-4064
Approaches to the assembly of (eta5-C5Me5)WS3Cu3-based supramolecular compounds from two preformed incomplete cubane-like clusters [PPh4][(eta5-C5Me5)WS3(CuX)3] (X = CN, 1a; X = Br, 1b) have been investigated. Treatment of 1a with LiBr/1,4-pyrazine (1,4-pyz), pyridine (py), LiCl/py, or 4,4'-bipyridine (4,4'-bipy) and treatment of 1b with 4,4'-bipy gave rise to a new set of W/Cu/S cluster-based compounds, [Li[((eta5-C5Me5)WS3Cu3(mu3-Br))2(mu-CN)3].C6H6]infinity (2), [(eta5-C5Me5)WS3Cu3(mu-CN)2(py)]infinity (3), [[PPh4][(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)].py]infinity (4), [PPh4]2[(eta5-C5Me5)WS3Cu3(CN)2]2(mu-CN)2.(4,4'-bipy) (5), and [[(eta5-C5Me5)WS3Cu3Br(mu-Br)(4,4'-bipy)].Et2O]infinity (6). The structures of 2-6 have been characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Compound 2 displays a 1D ladder-shaped chain structure built of square-like [[(eta5-C5Me5)WS3Cu3(mu3-Br)(mu-CN)]4](mu-CN)2(2-) anions via two pairs of Cu-mu-CN-Cu bridges. Compound 3 consists of a single 3D diamond-like network in which each (eta5-C5Me5)WS3Cu3 unit, serving as a tetrahedral node, interconnects with four other nearby units through Cu-mu-CN-Cu bridges. Compound 4 contains a 1D zigzag chain array made of cubane-like [(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)]- anions linked by a couple of Cu-mu-CN-Cu bridges. Compound 5 contains a dimeric structure in which the two incomplete cubane-like [(eta5-C5Me5)WS3(CuCN)2(mu-CN)]- anions are strongly held together via a pair of Cu-mu-CN-Cu bridges. Compound 6 contains a 2D brick-wall layer structure in which dimers of [(eta5-C5Me5)WS3Cu3Br(4,4'-bipy)]2 are interconnected via four Cu-mu-Br-Cu bridges. The successful construction of (eta5-C5Me5)WS3Cu3-based supramolecular compounds 2-6 from the geometry-fixed clusters 1a and 1b may expand the scope of the rational design and construction of cluster-based supramolecular assemblies.  相似文献   

14.
The coordination chemistry of the 2,3-dimethylindolide anion (DMI), (Me(2)C(8)H(4)N)(-), with potassium, yttrium, and samarium ions is described. In the potassium salt [K(DMI)(THF)](n), 1, prepared from Me(2)C(8)H(4)NH and KH in THF, the dimethylindole anion binds and bridges potassium ions in three different binding modes, namely eta(1), eta(3), and eta(5), to form a two-dimensional extended structure. In the dimethoxyethane (DME) adduct [K(DMI)(DME)(2)](2), 2, prepared by crystallizing a sample of 1 from DME, DMI exists as a mu-eta(1):eta(1) ligand. Compound 1 reacts with SmI(2)(THF)(4) in THF to form the distorted octahedral complex trans-(DMI)(2)Sm(THF)(4), 3, in which the dimethyindolide anions are bound in the eta(1) mode to samarium. Reaction of 2,3-dimethylindole with Y(CH(2)SiMe(3))(3)(THF)(2) afforded the amide complex (DMI)(3)Y(THF)(2), 4, in which the dimethylindolide anions are also bound in the eta(1) mode to yttrium. Compound 1 also reacts with (C(5)Me(5))(2)LnCl(2)K(THF)(2) (Ln = Sm, Y) to form unsolvated amide complexes (C(5)Me(5))(2)Ln(DMI) (Ln = Sm, 5; Y, 6), in which DMI attaches primarily through nitrogen, although the edge of the arene ring is oriented toward the metals at long distances.  相似文献   

15.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

16.
Treatment of [[Ti(eta(5)-C(5)Me(5))(mu-NH)](3)(mu(3)-N)] with alkali-metal bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)]] in toluene affords edge-linked double-cube nitrido complexes [M(mu(4)-N)(mu(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]](2) (M = Li, Na, K, Rb, Cs) or corner-shared double-cube nitrido complexes [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Na, K, Rb, Cs). Analogous reactions with 1/2 equiv of alkaline-earth bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)](2)(thf)(2)] give corner-shared double-cube nitrido complexes [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Mg, Ca, Sr, Ba). If 1 equiv of the group 2 amido reagent is employed, single-cube-type derivatives [(thf)(x)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Mg, x = 0; M = Ca, Sr, Ba, x = 1) can be isolated or identified. The tetrahydrofuran molecules are easily displaced with 4-tert-butylpyridine in toluene, affording the analogous complexes [(tBupy)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Ca, Sr). The X-ray crystal structures of [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = K, Rb, Cs) and [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3))-N)](2)] (M = Ca, Sr) have been determined. The properties and solid-state structures of the azaheterometallocubane complexes bearing alkali and alkaline-earth metals are discussed.  相似文献   

17.
Pi C  Liu R  Zheng P  Chen Z  Zhou X 《Inorganic chemistry》2007,46(13):5252-5259
The dinuclear ytterbium pyridyl diamido complexes [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,6)] (1a) and [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,3)] (1b) are easily prepared by protonolysis of Cp(3)Yb with 0.5 equiv of the corresponding diaminopyridine in accepted yields, respectively. Treatment of 1a with 2 equiv of dicyclohexylcarbodiimide (CyN=C=NCy) in THF at low temperature leads to the isolation of the formal double N-H addition product (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyN(CyNH)CN)(2)(C(5)H(3)N-2,6)] (2) in 42% yield. Compound 2 is unstable to heat and slowly isomerized to the mixed neutral/dianionic diguanidinate complex (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyNH)(2)CN(C(5)H(3)N-2,6)NC(NCy)(2)](THF) (3) at room temperature. Similarly, treatment of 1b with 2 equiv of CyN=C=NCy gives the addition/ isomerization product (Cp(2)Yb)(2)[mu-eta(2):eta(2):eta(1)-(CyNH)(2)CN(C(5)H(3)N-2,3)NC(NCy)(2)] (4). Moreover, the reaction of various ytterbium aryl diamido complexes (prepared in situ from [Cp(2)YbMe](2) and aryldiamine, respectively) with CyN=C=NCy affords the corresponding addition products (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,4)] (5), (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,3)](6), and (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(13)H(8)-2,7)] (7), respectively. In contrast to pyridyl-bridged bis(guanidinate monoanion) complexes, aryl-bridged bis(guanidinate monoanion) complexes 5-7 are stable even with prolonged heating at 110 degrees C. All the results not only demonstrate that the presence of the pyridyl bridge can impart the diamido complexes with a unique reactivity and initiate the unexpected reaction sequence but also indicate evidently that the number and distribution of negative charges of the diguanidinate ligand is tunable from double monoanionic units to mixed neutral/dianionic isomers. All the complexes are characterized by elemental analysis and IR spectroscopies. The structures of complexes 1a, 3, 5, 6, and 7 are also determined through X-ray single-crystal diffraction analysis.  相似文献   

18.
A series of uranyl aryloxide complexes has been prepared via metathesis reactions between [UO(2)Cl(2)(THF)(2)](2) and di-ortho-substituted phenoxides. Reaction of 4 equiv of KO-2,6-(t)()Bu(2)C(6)H(3) with [UO(2)Cl(2)(THF)(2)](2) in THF produces the dark red uranyl compound, UO(2)(O-2,6-(t)()Bu(2)C(6)H(3))(2)(THF)(2).THF, 1. Single-crystal X-ray diffraction analysis of 1 reveals a monomer in which the uranium is coordinated in a pseudooctahedral fashion by two apical oxo groups, two cis-aryloxides, and two THF ligands. A similar product is prepared by reaction of KO-2,6-Ph(2)C(6)H(3) with [UO(2)Cl(2)(THF)(2)](2) in THF. Single-crystal X-ray diffraction analysis of this compound reveals it to be the trans-monomer UO(2)(O-2,6-Ph(2)C(6)H(3))(2)(THF)(2), 2. Dimeric structures result from the reactions of [UO(2)Cl(2)(THF)(2)](2) with less sterically imposing aryloxide salts, KO-2,6-Cl(2)C(6)H(3) or KO-2,6-Me(2)C(6)H(3). Single-crystal X-ray diffraction analyses of [UO(2)(O-2,6-Cl(2)C(6)H(3))(2)(THF)(2)](2), 3, and [UO(2)Cl(O-2,6-Me(2)C(6)H(3))(THF)(2)](2), 4, reveal similar structures in which each U atom is coordinated by seven ligands in a pseudopentagonal bipyramidal fashion. Coordinated to each uranium are two apical oxo groups and five equatorial ligands (3, one terminal phenoxide, two bridging phenoxides, and two nonadjacent terminal THF ligands; 4, one terminal chloride, two bridging phenoxides, and two nonadjacent terminal THF ligands). Apparently, the phenoxide ligand steric features exert a greater influence on the solid-state structures than the electronic properties of the substituents. Emission spectroscopy has been utilized to investigate the molecularity and electronic structure of these compounds. For example, luminescence spectra taken at liquid nitrogen temperature allow for a determination of the dependence of the molecular aggregation of 3 on the molecular concentration. Electronic and vibrational spectroscopic measurements have been analyzed to examine trends in emission energies and stretching frequencies. However, comparison of the data for compounds 1-4 reveals that the innate electron-donating capacity of phenoxide ligands is only subtly manifest in either the electronic or vibrational energy distributions within these molecules.  相似文献   

19.
Reactions of [Tp*Rh(coe)(MeCN)](; Tp*= HB(3,5-dimethylpyrazol-1-yl)(3); coe = cyclooctene) with one equiv. of the organic disulfides, PhSSPh, TolSSTol (Tol = 4-MeC(6)H(4)), PySSPy (Py = 2-pyridyl), and tetraethylthiuram disulfide in THF at room temperature afforded the mononuclear Rh(III) complexes [Tp*Rh(SPh)(2)(MeCN)](3a), [Tp*Rh(STol)(2)(MeCN)](3b), [Tp*Rh(eta(2)-SPy)(eta(1)-SPy)](6), and [Tp*Rh(eta(2)-S(2)CNEt(2))(eta(1)-S(2)CNEt(2))](7), respectively, via the oxidative addition of the organic disulfides to the Rh(I) center in 1. For the Tp analogue [TpRh(coe)(MeCN)](2, Tp = HB(pyrazol-1-yl)(3)), the reaction with TolSSTol proceeded similarly to give the bis(thiolato) complex [TpRh(STol)(2)(MeCN)](4) as a major product but the dinuclear complex [[TpRh(STol)](2)(micro-STol)(2)](5) was also obtained in low yield. Complex 3 was treated further with the Rh(III) or Ir(III) complexes [(Cp*MCl)(2)(micro-Cl)(2)](Cp*=eta(5)-C(5)Me(5)) in THF at room temperature, yielding the thiolato-bridged dinuclear complexes [Tp*RhCl(micro-SPh)(2)MCp*Cl](8a: M = Rh, 8b: M = Ir). Dirhodium complex [TpRhCl(micro-STol)(2)RhCp*Cl](9) was obtained similarly from 4 and [(Cp*RhCl)(2)(micro-Cl)(2)]. Anion metathesis of 8a proceeds only at the Rh atom with the Cp* ligand to yield [Tp*RhCl(micro-SPh)(2)RhCp*(MeCN)][PF(6)](10), when treated with excess KPF(6) in CH(2)Cl(2)-MeCN. The X-ray analyses have been undertaken to determine the detailed structures of 3b, 4, 5, 6, 7, 8a, 9, and 10.  相似文献   

20.
The interactions of the benzothiazolate complex, CpCr(CO)(2)(SCSN(C(6)H(4))) (2), and the tetrazole thiolate complex, CpCr(CO)(3)(eta(1)-SCN(4)Ph) (3), with controlled amounts of Me(3)OBF(4) and (MeO)(2)SO(2), respectively, produced the corresponding mu(3)-oxo trinuclear thionate-bridged complexes, [Cp(3)Cr(3)(mu(2)-OH)(mu(3)-O)(mu(2)-eta(2)-SCSN(C(6)H(4)))(2)](5)BF(4) (45%) and [Cp(3)Cr(3)(mu(2)-OH)(mu(3)-O)(mu(2)-eta(2)-SCN(4)Ph)(2)](9)(MeOSO(3)) (53%), together with their respective free dimethylated thiolate ligands, [MeSCSNMe(C(6)H(4))](4)BF(4) and (Me(2)SCN(4)Ph)(8)MeOSO(3). The reaction of 3 with Me(3)OBF(4) resulted in the isolation of a binuclear complex, [Cp(2)Cr(2)(mu-OH)(mu-eta(2)-SCN(4)Ph)(2)](7)BF(4) (43%), and (8)BF(4) (27%). The reaction of the thiopyridine complex, CpCr(CO)(2)(SPy) (4), with I(2) also produced a similar mu(3)-oxo complex 10 (31%), together with CpCrI(2)(THF) (11) and the disulfide (SPy)(2). Similar reactions with 2 and 3 and I(2) yielded species 5 and 7, together with 11 and disulfides derived from their respective ligands. Cyclic voltammograms recorded in solutions of 5 and 9 indicated that the compounds could be reduced and oxidized at very similar potentials. An EPR spectrum characteristic of a compound with axial symmetry was obtained for 9 at 7 K. Single-crystal X-ray diffraction analyses confirmed that species 7 is dinuclear, whereas 5 and 9 are structural trinuclear analogues, each containing a mu(3)-oxo central core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号