首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some overtone absorption lines of ammonia and ethylene have been examined by using a tunable diode laser (TDL) spectrometer in the region around 12,650 and 11,800 cm(-1), respectively. The spectrometer sources are commercially available double heterostructure InGaAlAs and AlGaAs TDLs operating in the "free-running" mode. The high resolving power ( approximately 10(7) ) of the spectrometer permitted the detection and the study of the line positions of such molecules with a precision better than 0.01 cm(-1). In order to maximize the signal to noise ratio and to extract the necessary informations either on the line width and on the line position for the detected molecular resonances, the wavelength modulation spectroscopy (WMS) along with the second harmonic detection techniques have been applied. For this purpose, the fitting procedure took into account the instrumental effects and the amplitude modulation (AM) always associated with the frequency modulation (FM) of these type of sources. This technique permitted also the measurement of the collisional-broadening and -shifting coefficients by different buffer gases at room temperature.  相似文献   

2.
A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of lambda = 1590 nm for H2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588 < or = lambda < or = 1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm x m x Hz(-1/2) was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.  相似文献   

3.
The reaction of trichlorosilane (HSiCl(3)) with atomic chlorine (Cl) has been investigated by using infrared kinetic spectroscopy of the HCl product. The overall second order rate constant for the reaction has been determined as a function of temperature by using pseudo-first-order kinetic methods. Formation of HCl (nu=0) was monitored on the (nu=1<--0) R(2) line at 2944.914 cm(-1) and that of HCl (nu=1) on the (nu=2<--1) R(2) line at 2839.148 cm(-1). The overall second order rate constant was determined to be (2.8+/-0.1)x10(-11) cm(3) molecule(-1) s(-1) at 296 K. The rate constant shows no pressure dependence and decreases slightly with increased temperature [k=(2.3+/-0.2)x10(-11)e((66+/-3)/T) cm(3) molecule(-1) s(-1)]. Substantial vibrational excitation is measured in the HCl product, with the fraction of HCl (nu=1)/HCl (total)=0.41+/-0.08. These observations are consistent with the reaction being a barrierless hydrogen abstraction reaction. The experimental results are supported by ab initio quantum chemical calculations that show the transition state for abstraction to lie below the energy of the reactants, in disagreement with previously published calculations.  相似文献   

4.
We report the analyses of the three intermolecular combination bands of the hydrogen-bonded N2-HF complex at vHF=3, observed by molecular beam intracavity laser induced fluorescence. The origin of the HF intermolecular bending combination band, (3001(1)0)<--(00000), is 11 548.45(3) cm(-1), 328.2 cm(-1) higher than that of the (30000)<--(00000) transition with an origin at 11 220.250(1) cm(-1). The average rotational constant of the (3001(1)0) level is 0.103 63(1) cm(-1), a 4.8% reduction from B(30000)=0.109 21(1) cm(-1). Perturbations are observed as line splittings, increased line widths, and reduced peak intensities of a number of lines of the e and f components of (3001(1)0). In addition, the centrifugal distortion coefficients of both components are large, negative, and different. The N2 intermolecular bend transition (30001(1))<--(00000) has an origin at 11 288.706(1) cm(-1), 68.456(2) cm(-1) above that of the (30000)<--(00000) transition. This is the lowest combination state at v(HF)=3 level. It is unperturbed, yielding B(30001(1))=0.110.10(1) cm(-1). The transition to the intermolecular stretching state, (30100)<--(00000), has an origin at 11 318.858(1) cm(-1) with B(30100)=0.105 84(1) cm(-1). Both the (30100) and (30000) levels show an isolated perturbation at J=4. The Lorentzian component of the line widths, which show considerable variation with soft mode, are GammaL(30000)=490(30) MHz, GammaL(30100)=630(30) MHz, GammaL(3001(1)0)=250(30) MHz, and GammaL(30001(1))=500(50) MHz.  相似文献   

5.
This paper deals with the development of a novel single-frequency tunable diode laser with fiber-optic output for gas-analysis applications. The approach we propose is a convenient, simple and cheap solution for spectroscopy of single absorption lines of any gases having absorption bands in the optical fiber transparency window (0.7 microm/1.7 microm). The presence of fiber-optic output is an additional advantage for remote sensing applications. The laser operation is demonstrated as applied to R7 line of 2 nu(3) methane absorption band at lambda = 1.645 microm. The mode-hop-free tuning range of 35 GHz (1.2 cm(-1)) has been achieved.  相似文献   

6.
This paper deals with the development of a novel single-frequency tunable diode laser with fiber-optic output for gas-analysis applications. The approach we propose is a convenient, simple and cheap solution for spectroscopy of single absorption lines of any gases having absorption bands in the optical fiber transparency window (0.7 microm/1.7 microm). The presence of fiber-optic output is an additional advantage for remote sensing applications. The laser operation is demonstrated as applied to R7 line of 2 nu(3) methane absorption band at lambda = 1.645 microm. The mode-hop-free tuning range of 35 GHz (1.2 cm(-1)) has been achieved.  相似文献   

7.
A compact fiber-optic diode laser spectrometer for the measurement of CO and CO(2) gas concentrations in the near infrared around 1580 nm is described. By use of a balanced receiver to suppress diode laser intensity noise a sensitivity of 6.4 x 10(-7) at 1 Hz system bandwidth was achieved. At a reduced pressure of 80 hPa this equals to a detection limit of 5.1 ppm CO and 9.1 ppm CO(2) with 1m absorption path length. The observed line shapes of the 2f wavelength modulation spectroscopy (WMS) scheme are analyzed theoretically and experimentally. Accurate measurements of magnitude and phase of the diode laser frequency and intensity modulation responses were found critically for modeling the observed line shapes. In situ measurements of gas dissociation processes inside of a medium-power carbon dioxide laser are presented as an application example.  相似文献   

8.
The rate of the reaction 1, HCO+O2-->HO2+CO, has been determined (i) at room temperature using a slow flow reactor setup (20 mbarH2+HCO+CO, into additional HCO radicals. The rate constants of reaction 4 were determined from unperturbed photolysis experiments to be k4(295 K)=(3.6+/-0.3)x10(10) cm3 mol-1 s-1 and k4(769-1107 K)=5.4x10(13)exp(-18 kJ mol-1/RT) cm3 mol-1 s-1(Delta log k4=+/-0.12).  相似文献   

9.
We report the realisation of a laser spectrometer in the mid-infrared spectral region based on difference-frequency generation in a periodically poled LiNbO3 crystal. Tunable coherent radiation around 3 microm was produced by mixing a diode-pumped monolithic cw Nd-YAG laser and an injection-locked diode laser at 0.785 microm. High sensitivity N2O detection was demonstrated by observing pure absorption spectra of lines in the v1 + v3 combination band. We estimate a minimum detectable pressure of pure N2O of 1 x 10(-2) Pa with 0.9 m absorption path-length, corresponding to an absorbance of 3 x 10(-4). Nitrous oxide was also detected in presence of O2, N2 and air. Collisional broadening coefficients for the P(33) line at 3447.678 per cm are reported for N2O-N2 and N2O-O2 mixtures.  相似文献   

10.
Rotationally resolved infrared emission spectra of HCl(v=1-3) in the reaction of Cl+CH3SH, initiated with radiation from a laser at 308 nm, are detected with a step-scan Fourier-transform spectrometer. Observed rotational temperature of HCl(v=1-3) decreases with duration of reaction due to collisional quenching; a short extrapolation to time zero based on data in the range 0.25-4.25 micros yields a nascent rotational temperature of 1150+/-80 K. The rotational energy averaged for HCl(v=1-3) is 8.2+/-0.9 kJ mol(-1), yielding a fraction of available energy going into rotation of HCl, fr=0.10+/-0.01, nearly identical to that of the reaction Cl+H(2)S. Observed temporal profiles of the vibrational population of HCl(v=1-3) are fitted with a kinetic model of formation and quenching of HCl(v=1-3) to yield a branching ratio (68+/-5):(25+/-4):(7+/-1) for formation of HCl(v=1):(v=2):(v=3) from the title reaction and its thermal rate coefficient k(2a)=(2.9+/-0.7)x10(-10) cm(3) molecule(-1) s(-1). Considering possible estimates of the vibrational population of HCl(v=0) based on various surprisal analyses, we report an average vibrational energy 36+/-6 kJ mol(-1) for HCl. The fraction of available energy going into vibration of HCl is f(v)=0.45+/-0.08, significantly greater than a value fv=0.33+/-0.06 determined previously for Cl+H2S. Reaction dynamics of Cl+H(2)S and Cl+CH3SH are compared; the adduct CH3S(Cl)H is likely more transitory than the adduct H(2)SCl.  相似文献   

11.
Two frequency chirped continuous wave diode lasers operating in the near infrared (IR) at wavelengths of lambda approximately 1.535 microm and lambda approximately 1.520 microm have been used to measure acetylene concentrations using the P(17) and R(9) rotational lines of the (nu1 + nu3) vibrational combination band. The diode lasers were frequency chirped by applying an electrical current pulse to the laser driver at a repetition rate of greater than 1 kHz. As the laser is operated at high repetition rates, more than 1000 spectra per second can, in principle, be acquired and summed, allowing fast accumulation of data, rapid averaging and consequent improvement of the signal to noise ratio and detection limit. Experiments were performed using a single-pass cell with a path length of 16.4 cm, and also an astigmatic multi-pass absorption cell aligned to give a path length of 56 m. Detection limits corresponding to minimum detectable absorption coefficients, alpha(min), of 5.6 x 10(-5) and 7.8 x 10(-8) cm(-1), respectively, were obtained over a 4 s detection bandwidth. These detection limits would correspond to mixing ratios of 21 parts per million by volume (ppmv) and 59 parts per billion by volume (ppbv) of acetylene at 1 atm in air, with the deleterious effects of pressure broadening accounted for. The single-pass cell was used to perform breakthrough volume (BTV) experiments for the low volume adsorbent traps used to pre-concentrate organic compounds in air, taking advantage of the capability of the system to measure concentrations in real time.  相似文献   

12.
Direct spectroscopy of a fast molecular ion beam offers many advantages over competing techniques, including the generality of the approach to any molecular ion, the complete elimination of spectral confusion due to neutral molecules, and the mass identification of individual spectral lines. The major challenge is the intrinsic weakness of absorption or dispersion signals resulting from the relatively low number density of ions in the beam. Direct spectroscopy of an ion beam was pioneered by Saykally and co-workers in the late 1980s, but has not been attempted since that time. Here, we present the design and construction of an ion beam spectrometer with several improvements over the Saykally design. The ion beam and its characterization have been improved by adopting recent advances in electrostatic optics, along with a time-of-flight mass spectrometer that can be used simultaneously with optical spectroscopy. As a proof of concept, a noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) setup with a noise equivalent absorption of ~2 × 10(-11) cm(-1) Hz(-1/2) has been used to observe several transitions of the Meinel 1-0 band of N(2) (+) with linewidths of ~120 MHz. An optical frequency comb has been used for absolute frequency calibration of transition frequencies to within ~8 MHz. This work represents the first direct spectroscopy of an electronic transition in an ion beam, and also represents a major step toward the development of routine infrared spectroscopy of rotationally cooled molecular ions.  相似文献   

13.
We report the infrared spectra of HCl, (HCl)2, and H2O-HCl in liquid helium nanodroplets in the frequency region between 2680 and 2915 cm(-1). For the HCl monomer a line width of 1.0 cm(-1) (H35Cl) corresponding to a lifetime of 5.3 ps was observed. The line broadening indicates fast rotational relaxation similar to that previously observed for HF. For (HCl)2 the free HCl as well as the bound HCl stretching band has been observed. The nu2+ bands of (HCl)2 could be rotationally resolved, and rotational constants were deduced from the spectra. We observed both the allowed and the symmetry forbidden transition. However, the forbidden "broken symmetry" tunneling transition of the mixed dimer shows an intensity that is considerably enhanced compared to the gas phase. Upon the basis of the present measurements we were able to calculate the tunneling splitting in the excited state. The tunneling splitting is found to be reduced by 28% compared to the gas phase. Transitions from the ground state to the Ka=1 level of the free HCl stretch (nu1) are recorded and show considerable line broadening with a line width of 2 cm(-1). The excited state Ka=1 has an additional rotational energy of about 10 cm(-1), thereby allowing fast rotational relaxation by coupling to helium excitations. In addition we observed the HCl stretch of the HCl-H2O dimer, which exhibits an unusually large width (1.7 cm(-1) for H35Cl)) and large red shift (8.5 cm(-1)), compared to the gas-phase values. The large-amplitude motion originating from the libration mode of the HCl-H2O complex is supposed to act as a fast relaxation manifold.  相似文献   

14.
The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. M?ssinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) 相似文献   

15.
We applied cavity-enhanced frequency modulation absorption spectroscopy (also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy) to perform high-resolution spectroscopy of the sixth overtone band of nitric oxide near 797 nm. By using novel high-bandwidth balanced detectors, baseline variations caused by residual amplitude modulation were significantly reduced. The ultrahigh sensitivity (2 x 10(-10) cm(-1) minimum detectable absorption at 1 Hz detection bandwidth) of our spectrometer allowed accurate measurements of 15 individual line intensities of P- and R-branch transitions in the 2Pi(1/2)-2Pi(1/2) subband. A vibrational transition moment of 3.09(6) muD+/-13% and Herman-Wallis coefficients of a = -0.0078(26) and b = 0.001 25(45) were found by fitting the line intensities. Based on our measured transition moment, and those of other transitions from the literature, a new parametrization for the electric dipole moment function (EDMF) of nitric oxide, valid for 0.91 < or = r < or = 1.74 A, has been extracted. The residuals of this fit demonstrate that the derived EDMF is the most accurate representation to date of the dipole moment function. The new EDMF will be valuable for accurate intensity prediction of transitions that cannot be easily measured experimentally.  相似文献   

16.
The synthesis and photophysical properties are described for a series of porphyrin, phthalocyanine and pyrazinoporphyrazine derivatives which bear four or eight peripheral fluorenyl substituents as antennae. Representative examples are 5,10,15,20-tetra(9,9-dihexyl-9H-fluoren-2-yl)porphyrin (2), 5,10,15,20-tetrakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]porphyrin (3), 2,3,9,10,16,17,23,24-octakis(9,9-dihexyl-9H-fluoren-2-yl)-29H,31H-phthalocyanine (8) and 2,3,9,10,16,17,23,24-octakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]-29H,31H-tetrapyrazinoporphyrazine (9). Palladium-mediated Suzuki-Miyaura cross-coupling reactions have been key steps for attaching the substituents. The compounds are deep-red emitters: lambda(max)(em)=659 (3), 737 (8) and 684 nm (9). Their absorption and emission spectra, their fluorescence lifetimes and quantum yields are correlated with the structures of the macrocycles and the substituents. The solution fluorescence quantum yields of porphyrin derivatives substituted with fluorene (2-4) and terphenyl substituents (7) (Phi(f)=0.21-0.23) are approximately twice that of tetraphenylporphyrin. For phthalocyanine derivative 8, Phi(f) was very high (0.88). Specific excitation of the fluorene units of 8 produced emission from both of them (lambda(max)=480 nm) and also from the phthalocyanine core (lambda(max)=750 nm), indicating a competitive rate of energy transfer and radiative decay of the fluorenes. Organic light-emitting devices (OLEDs) were made by spin-coating techniques by using a polyspirobifluorene (PSBF) copolymer as the host blended with 3 (5 wt. %) in the configuration ITO/PEDOT:PSS/PSBF copolymer:3/Ca/Al. Deep-red emission (lambda(max)=663 nm; CIE coordinates x=0.70, y=0.27) was observed with an external quantum efficiency of 2.5 % (photons/electron) (at 7.5 mA cm(-2)), a low turn-on voltage and high emission intensity (luminance) of 5500 cd m(-2) (at 250 mA/ m(2)).  相似文献   

17.
Erbium laser radiation has a great affinity for the water molecule, which is present in quantity in biological hard tissues. The objective of this work is to identify chemical changes by infrared spectroscopy of irradiated dentine by an Er:YAG-2.94 microm laser. The irradiation was performed with fluences between 0.365 and 1.94 J/cm2. For the infrared analysis a Fourier transform infrared spectrometer was used. After the irradiation were observed: loss of water, alteration of the structure and composition of the collagen, and increase of the OH- radical. These alterations can be identified by a decrease in intensity of the water band between 2800-3800 cm(-1), OH- band at 3575 cm(-1) and bands ascribed to organic matrix between 2800-3400 cm(-1) and 1100-1400 cm(-1).  相似文献   

18.
The laser flash photolysis resonance fluorescence technique was used to monitor atomic Cl kinetics. Loss of Cl following photolysis of CCl4 and NaCl was used to determine k(Cl + C6H6) = 6.4 x 10(-12) exp(-18.1 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 578-922 K and k(Cl + C6D6) = 6.2 x 10(-12) exp(-22.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 635-922 K. Inclusion of literature data at room temperature leads to a recommendation of k(Cl + C6H6) = 6.1 x 10(-11) exp(-31.6 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) for 296-922 K. Monitoring growth of Cl during the reaction of phenyl with HCl led to k(C6H5 + HCl) = 1.14 x 10(-12) exp(+5.2 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 294-748 K, k(C6H5 + DCl) = 7.7 x 10(-13) exp(+4.9 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 292-546 K, an approximate k(C6H5 + C6H5I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) over 300-750 K, and an upper limit k(Cl + C6H5I) < or = 5.3 x 10(-12) exp(+2.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 300-750 K. Confidence limits are discussed in the text. Third-law analysis of the equilibrium constant yields the bond dissociation enthalpy D(298)(C6H5-H) = 472.1 +/- 2.5 kJ mol(-1) and thus the enthalpy of formation Delta(f)H(298)(C6H5) = 337.0 +/- 2.5 kJ mol(-1).  相似文献   

19.
Absolute absorption cross sections of the absorption spectrum of the 2nu1 band of the HO2 radical in the near-IR region were measured by continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled to laser photolysis in the wavelength range 6604-6696 cm(-1) with a resolution better than 0.003 cm(-1). Absolute absorption cross sections were obtained by measuring the decay of the HO2 self-reaction, and they are given for the 100 most intense lines. The most important absorption feature in this wavelength range was found at 6638.20 cm(-1), exhibiting an absorption cross section of sigma = 2.72 x 10(-19) cm2 at 50 Torr He. Using this absorption line, we obtain a detection limit for the HO2 radical at 50 Torr of 6.5 x 10(10) cm(-3).  相似文献   

20.
High resolution spectral data of 100 ppmV (10(-6) per volume) concentrations of the trace gases bromo methane (BM, CH3Br), and methyl bromide (DME, (CH3)2O), buffered in synthetic air (80% N2, 20% O2) at atmospheric pressure and room temperature are reported. The spectra are recorded with a continuously tunable 10-bar CO2 laser based photoacoustic (PA) spectrometer. The tuning range covers 76 cm(-1) between 9.2 microm (1087 cm(-1)) and 10.7 microm (935 cm(-1)) at a constant narrow line-width of 0.018 cm(-1) (540 MHz). The non-resonant PA measuring cell employs an in-line 10-microphone array. The estimated detection limits for BM and DME are approximately 2 ppmV for a signal-to-noise ratio (SNR) of 3. This corresponds to a calculated detection limit of approximately 76 ppbV for ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号