首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the Negishi reagent Cp2ZrBun 2 with 1,4-bis(tert-butyl)butadiyne ButC≡C-C≡CBut leads to four products: a five-membered zirconacyclocumulene complex Cp2Zr(η4-ButC4But) (2) synthesized earlier by another method, the previously unknown seven-membered zirconacyclocumulene Cp2Zr[η4-ButC4(But)-C(C2But)=CBut] (3) as well as small amounts of the zirconocene binuclear butatrienyl complex Cp2(Bun)Zr(ButC4But)Zr(Bun)Cp2 (4), and the dimeric acetylide [Cp2ZrC≡CBut]2 (5). The structure of complexes 2–5 was established by X-ray diffraction studies.  相似文献   

2.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

3.
The homoleptic compound Ru(II)(L)2 where L = 4′-carboxylato-2,2′:6′,2″-terpyridine was employed as a bridge to link two [Mo2(O2CBu t )3]+ units in the formation of the title complex: [Mo2(O2CBu t )3]2-μ-Ru(II)L2] (2+) [BF4]2, which has been characterized by 1H-NMR, UV–vis and emission spectroscopy, MALDI-TOF-MS and cyclic voltammetry. The electronic structure of the complex has been investigated by density functional theory employing Turbomole on the model complex cation [Mo2(O2CH)3]2-μ-(Ru(II)L2)2+. The intense blue color of the cation arises from M2 δ to bridge/terpyridine charge transfer. This paper is dedicated to Prof. F. A. Cotton in memoriam.  相似文献   

4.
《Polyhedron》1987,6(6):1375-1381
N-nitroso-N-alkylhydroxylamines have been prepared by hydrolysis of the mixture obtained by reaction of nitric oxide with Grignard reagents, and stabilized as their copper(II) or iron(III) complexes, Cu(RN2O2)2 and Fe(RN2O2)3, where R is, for example, Me, Et, Pri, Buiso, Ph, n-C8H17 or n-C12H25. The complexes have been characterized by analytical, magnetic and spectroscopic measurements. By single-crystal X-ray methods Cu(PriN2O2)2 has been found to be trans-planar and Fe(PrnN2O2)3 has a facial octahedral structure; in each complex the NO bond lengths are equal with no significant variation between the copper and iron complexes.  相似文献   

5.
《Polyhedron》1986,5(8):1377-1380
Addition of halogens, X2 (X = I or Br), to hydrocarbon solutions of W2(O2CBut)4·2L, where L = THF or ButCONMe2, does not lead to simple oxidative-addition products of formula W2X2(O2CBut)4 having axially aligned halogen-tungsten bonds [cf. W2R2(O2CR′)4 compounds, where R = CH2CMe3 or CH2Ph, and R′ = Me, Et, But or Ph] but rather leads to facile carboxylate group exchange. The overall reactions are thus complex and two crystalline products isolated in ca 20% crystalline yield have been characterized by X-ray studies. Addition of I2 has allowed isolation of the salt [W2(O2CBut)5·2L]+[W2I4(O2CBut)2], where L = ButCONMe2, while addition of Br2 gave W2Br2(O2CBut)3·2L, where L = THF.  相似文献   

6.
Synthesis and Molecular Structure of the Binuclear tert-Butyliminovanadium(IV) Complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] (X = OtC4H9, CH2CMe3) Syntheses of the neopentylvanadium(V) compounds tC4H9N?V(CH2CMe3)3?n(OtC4H9)n (n = 0 ( 7 ), 1 ( 6 ), 2) are described. 6 and 7 decompose by irradiation splitting off neopentane and yielding the binuclear diamagnetic neopentylvanadium(IV) complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] [X = OtC4H9 ( 8 ), CH2CMe3 ( 11 )]. All compounds obtained are characterized by 1H and 51V NMR spectroscopy. 8 has been found by X-ray diffraction analysis to be a binuclear complex with bridging tert-butylimino ligands and a vanadium—vanadium single bond. The complexes tC4H9N?V(CH2C6H5)(OtC4H9)2 and [(μ-NtC4H9)2V2(CH2SiMe3)2(OtC4H9)2] ( 10 ) have been also prepared; the crystal structure of 8 and 10 are nearly identical.  相似文献   

7.
Abstract

The six-membered ring system RCN(NSCl)2 (R= tBu, CCl3, Me2N, Et2N, iPr2N) can be prepared by a cycloaddition reaction of the free nitrile, RCN, with cyclo-(NSCl)3 at mom temperature. This reaction is slow for R= tBu and CCl3, but it can be accelerated by UV light. The six-membered rings are converted to five-membered rings RCN2S2 + Cl- by thermolysis. By varying the conditions of the cycloaddition reaction, 1,3-(RCN)2(NSCl)2 (R= Me2N, Et2N) and 1,5- RCN(NSN)2SCl can be obtained.  相似文献   

8.
The thermolysis and reactions of the polymeric high spin MnII and FeII complexes [Mn(μ-OOCBut)2(HOEt)]n (1) and [Fe(μ-OOCBut)2]n (3) with pivalic acid and o-phenylenediamines 1,2-(NH2)2C6H2R2 (R = H or Me) were studied. The synthesis of compound 1 performed with a deficiency of pivalate anions affords the antiferromagnetic chloropivalate polymer { (MeCN)(HOOCBut)(H2O)Mn5Cl(OH)(OOCBut)8·MeCN}n. The reaction of 1 with an excess of pivalic acid produces the antiferromagnetic polymer [Mn4(OOCBut)8(HOOCBut)2]n. The analogous reaction of pivalic acid with polymer 3 gives the mononuclear complex Fe(η 1-OOCBut)21-HOOCBut)4 containing the high spin iron(II) atom as the major product. Study of the reactions of 3 with a deficiency (<1: 1) and an excess (>1: 1) of diamines demonstrated that the polymer {[(η2-(NH2)2C6H4)2Fe(μ-OOCBut)2][Fe2(μ-OOCBut)4] · · 2MeCN}n is generated as the major product in the former case, whereas the mononuclear complexes Fe(η1-OOCBut)21-(NH2)2C6H4]4 and Fe(η1-OOCBut)22-(NH2)2C6H2Me2][η1-(NH2)2C6H2Me2]2 are predominantly obtained in the latter case. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 779–792, May, 2006.  相似文献   

9.
李悦生 《高分子科学》2011,29(5):627-633
Mono salicylaldiminato vanadium(Ⅲ) complexes(1a-1f)[RN = CH(ArO)]VCl2(THF)2(Ar = C6H4(1a-1e),R = Ph,1a;R = p-CF3Ph,1b;R = 2,6-Me2Ph,1c;R = 2,6-iPr2Ph,1d;R = cyclohexyl,1e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph, 1f) and bis(salicylaldiminato) vanadium(Ⅲ) complexes(2a-2f)[RN = CH(ArO)]2VCl(THF)x(Ar = C6H4(2a-2e),x = 1 (2a-2e),R = Ph,2a;R =p-CF3Ph,2b;R = 2,6-Me2Ph,2c;R = 2,6-iPr2Ph,2d;R = cyclohexyl,2e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph,x = 0,2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2AlCl.The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity,the molecular weight and molecular weight distribution of the copolymers etc.The highest catalytic activity of 8.82 kg PE/(mmolV·h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands.The copolymer with the highest molecular weight was obtained by using mono salicylaldiminato vanadium catalyst 1f having ligands with tert-butyl at the ortho and para of the aryloxy moiety.  相似文献   

10.
Vanadium(V) oxido peroxido tartrato complexes have been prepared from aqueous-ethanolic media and characterized by spectroscopic methods. Using racemic tartaric acid for the synthesis, the simultaneous crystallization of racemic compounds (racemic phases) and racemic conglomerates (chiral phases) has been observed. The X-ray crystal structure of (NH4)4[V2O2(O2)2((2R,3R)–H2tart)2(μ–H2O)][V2O2(O2)2((2S,3S)–H2tart)2(μ–H2O)]·8H2O (tart = C4H2O6 4−) revealed that the dinuclear anion is composed of two pentagonal bipyramidal polyhedra about vanadium atoms, which are joined to each other by sharing two oxygen atoms of hydroxyl groups and an oxygen atom from a bridging water ligand. The prepared compounds are not stable in aqueous solution; 51V NMR spectra exhibit the signals of several peroxido and non-peroxido vanadium(V) complexes.  相似文献   

11.
The ligand 1,1,3,3-tetramethylbutylisocyanide, CNCMe2CH2CMe3, i.e. t-octylisocyanide, with Co(ClO4)2 · 6H2O or Co(BF4)2 · 6H2O in ethanol, produces pentakis(alkylisocyanide)cobalt(II) complexes, [Co(CNC8H17-t)5](ClO4)2 (1) and [Co(CNC8H17-t)5](BF4)2 · 2.0H2O (2). These Co(II) complexes undergo reduction/substitution upon reaction with trialkylphosphine ligands to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2]ClO4 (3), [Co(CNC8H17-t)3{P(C4H9-n)3}2]BF4 (4), and [Co(CNC8H17-t)3{P(C3H7-n)3}2]ClO4 (5). Complex 3 is oxidized with AgClO4 to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2](ClO4)2 (6). Complex 1 yields [Co(CNC8H17-t)4py2](ClO4)2 (7) upon dissolving in pyridine. Reactions with triarylphosphine and triphenylarsine ligands were unsatisfactory. The chemistry of 1 and 2 is therefore more similar to that of Co(II) complexes with CNCMe3 than with CNCHMe2, other alkylisocyanides, or arylisocyanides, but shows some behavior dissimilar to any known Co(II) complexes of alkylisocyanides or arylisocyanides. Infrared and electronic spectra, magnetic susceptibility, molar conductivities, and cyclic voltammetry are reported and compared with known complexes. 1H, 13C, and 31P NMR data were also measured for the diamagnetic complexes 3, 4, and 5.  相似文献   

12.
Solid complex compounds of Fe(II) and Fe(III) ions with rutin were obtained. On the basis of the elementary analysis and thermogravimetric investigation, the following composition of the compounds was determined: (1) FeOH(C27H29O16)·5H2O, (2) Fe2OH(C27H27O16)·9H2O, (3) Fe(OH)2(C27H29O16)·8H2O, (4) [Fe6(OH)2(4H2O)(C15H7O12)SO4]·10H2O. The coordination site in a rutin molecule was established on the basis of spectroscopic data (UV–Vis and IR). It was supposed that rutin was bound to the iron ions via 4C=O and 5C—oxygen in the case of (1) and (3). Groups 5C–OH and 4C=O as well as 3′C–OH and 4′C–OH of the ligand participate in binding metals ions in the case of (2). At an excess of iron(III) ions with regard to rutin under the synthesis conditions of (4), a side reaction of ligand oxidation occurs. In this compound, the ligands’ role plays a quinone which arose after rutin oxidation and the substitution of Fe(II) and Fe(III) ions takes place in 4C=O, 5C–OH as well as 4′C–OH, 3′C–OH ligands groups. The magnetic measurements indicated that (1) and (3) are high-spin complexes.  相似文献   

13.
Frech  C. M.  Llamazares  A.  Alfonso  M.  Schmalle  H. W.  Berke  H. 《Russian Chemical Bulletin》2004,53(5):1116-1120
The reaction of [Re(NO)2(PR3)2][BArF 4] (R = cyclo-C6H13 (1a), Pri (1b); [BArF 4] = [B(3,5-(CF3)2C6H3)4]) with phenylacetylene in the presence of a non-nucleophilic base, like 2,6-bis(tert-butyl)pyridine (BTBP) or ButOK, affords the phenylethynyl complexes [Re(CCPh)(NO)2(PR3)2] (R = cyclo-C6H13 (2a); Pri (2b)) in moderate yields. In the absence of a base, complexes 1a and 1b are transformed into the compounds [Re(CCPh)(CH=C(Ph)ONH)(NO)(PR3)2][BArF 4] (3a and 3b, respectively). The structure of complex 3a was confirmed by X-ray diffraction analysis. The latter reaction is proposed to be initiated by deprotonation of the terminal alkyne H atom by the bent nitrosyl ligand followed by the subsequent 1,3-dipolar addition of the ReN(H)O moiety to phenylacetylene.  相似文献   

14.
Equimolar reactions of BuSn(OPri)3 with diethanolamines, RN(CH2CH2 OH) 2 (abbreviated as RdeaH2, where R = H or Me), afford dimeric isopropoxo-bridged six-coordinate butyltin(IV) complexes [{Bu(η3-Rdea)Sn(μ-OPri)}2] (R = H ( 1 ), Me ( 2 )). Interactions between BuSn(OPri)3 and diethanolamines (RdeaH2) in a 1:2 molar ratio yield monomeric derivatives of the type [BuSn(Rdea)(RdeaH)] (R = H ( 3 ), R = Me ( 4 )). These homometallic complexes on 1:1 reactions with an appropriate metal alkoxide form monomeric heterobimetallic complexes of the type [BuSn (Rdea)2 {M(OR′)n}] (R = H, M = Al, R′ = Pri, n = 2 ( 5 ); R = H, M = Ti, R = Pri, n = 3 ( 6 ); R = H, M = Zr, R′ = Pri, n = 3 ( 7 ); R = Me, M = Al, R′ = Pri, n = 2 ( 8 ); R = Me, M = Ti, R′ = Pri, n = 3 ( 9 ); R = Me, M = Ge, R′ = Et, n = 3 ( 10 )). The driving force behind this work was (i) to explore the utility of homometal complexes ( 1 ) ( 4 ) in assembling a metal alkoxide fragment via a condensation reaction and (ii) to gain insights into the structures of new compounds by NMR spectral data. All of these derivatives have been characterized by elemental analysis, spectroscopic (IR, NMR; 1H, 27Al, and 119Sn) studies, and molecular weight measurements. 119Sn NMR spectral studies indicate that both the homometallic ( 3 ) and ( 4 ) and heterobimetallic ( 5 ) ( 9 ) complexes exist in a solution in an equilibrium of six- and five-coordinated tin(IV) species.  相似文献   

15.
Summary. The reaction of RuTp(COD)Cl (1) with PPh2Pri and terminal alkynes HCCR (R=C6H5, C4H3S, C6H4OMe, Fc, C6H4Fc, C6H9) affords the neutral vinylidene complexes RuTp(PPh2Pri) (Cl)(=C=CHR) (2a2f) in high yields. These complexes do not react with MeOH to give methoxy carbene complexes of the type RuTp(PPh2Pri)(Cl)(=C(OMe)CH2R), but react with oxygen to yield the CO complex RuTp(PPh2R)(Cl)(CO) (3). The structures of 2b, 2f, and 3 have been determined by X-ray crystallography.  相似文献   

16.
The interactions of potentially dinucleating bridging functionalities (I–VI) with the ruthenium-bis(bypyridine) precursor [RuII(bpy)2(EtOH)2]2+have been explored. The bridging functionsI,II andVI directly result in the expected dinuclear complexes of the type [(bpy)2RuIILnRuII(bpy)2]z+ (1,2,7 and 8) (n = 0,z =4 andn = -2,z = 2). The bridging ligandIII undergoes N-N or N-C bond cleavage reaction on coordination to the RuII(bpy)2 core which eventually yields a mononuclear complex of the type [(bpy)2RuII(L)]+,3, where L =-OC6H3(R)C(R′)=N-H. However, the electrogenerated mononuclear ruthenium(III) congener, 3+in acetonitrile dimerises to [(bpy)2RuIII {-OC6H3(R)C(R′)=N-N=(R′)C(R)C6H3O-}RuIII(bpy)2]4+ (4). In the presence of a slight amount of water content in the acetonitrile solvent the dimeric species (4) reduces back to the starting ruthenium(II) monomer (3). The preformed bridging ligandIV undergoes multiple transformations on coordination to the Ru(bpy)2 core, such as hydrolysis of the imine groups ofIV followed by intermolecular head-to-tail oxidative coupling of the resultant amino phenol moieties, which in turn results in a new class of dimeric complex of the type [(bpy)2RuII -OC6H4-N=C6H3(=NH)O-RuII(bpy)2]2+ (5). In5, the bridging ligand comprises of twoN,O chelating binding sites each formally in the semiquinone level and there is ap-benzoquinonediimine bridge between the metal centres. In complex6, the preformed bridging ligand, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, H2L (V) undergoes oxidative dehydrogenation to aromatic tetrazine based bridging unit, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine, L. The detailed spectroelectrochemical aspects of the complexes have been studied in order to understand the role of the bridging units towards the intermetallic electronic coupling in the dinuclear complexes.  相似文献   

17.
The reactions of 2-(2-pyridyl)benzothiazole (1) with MX2·nH2O salts (M = NiII, CoII, or CuII; X = Cl or ClO4; n = 0–2) in EtOH afforded the corresponding complexes. Depending on the nature of the counterion in the starting metal salt, the reactions give compounds of composition M(1)Cl2·nH2O or Cu(1)2(ClO4)2·H2O. The molecular and crystal structure of the CuII(1)2(ClO4)2·H2O complex was established by X-ray diffraction. The copper atom in this complex has a distorted tetragonal-pyramidal ligand environment and is coordinated by four nitrogen atoms of two ligand molecules and one water molecule. Electrochemical study of the ligand and the resulting complexes by cyclic voltammetry and at a rotating disk electrode demonstrated that ligand 1 stabilizes reduced forms of complexes containing Ni, Co, or Cu atoms in the oxidation state +1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1738–1744, October, 2006.  相似文献   

18.
The reaction of RuTp(COD)Cl (1) with PPh2Pri and terminal alkynes HCCR (R=C6H5, C4H3S, C6H4OMe, Fc, C6H4Fc, C6H9) affords the neutral vinylidene complexes RuTp(PPh2Pri) (Cl)(=C=CHR) (2a2f) in high yields. These complexes do not react with MeOH to give methoxy carbene complexes of the type RuTp(PPh2Pri)(Cl)(=C(OMe)CH2R), but react with oxygen to yield the CO complex RuTp(PPh2R)(Cl)(CO) (3). The structures of 2b, 2f, and 3 have been determined by X-ray crystallography.  相似文献   

19.
Due to hydrogen bonding, bis(18-crown-6) stilbene forms 1 : 1, 1 : 2, and 2 : 2 complexes with H3N+(CH2) n NH3 + 2ClO4 salts (n = 2—10, 12). The length of the polymethylene chain in the diammonium ions affects the phototransformation direction of stilbene and the composition of the products. In the 2: 2 bispseudosandwich complexes with relatively short alkanediammonium ions (n = 2—4), the stereoselective reaction of [2+2] photocycloaddition proceeds to form mainly the rctt-isomer of the cyclobutane derivative. The structure of rctt-cyclobutane derivative as a complex with H3N+(CH2)4NH3 +2ClO4 - was confirmed by X-ray diffraction analysis.  相似文献   

20.
Summary.  Oxo peroxo glycolato complexes of vanadium(V) (M 2[V2O2(O2)2(C2H2O3)2nH2O (n=0, 1; M=NBu4 + (1), K+ (2), NH4 + (3), Cs+ (4), NPr4 + (5)) as well as (NBu4)2[V2O4(C2H2O3)2]ċ H2O (6) have been prepared and characterized by spectroscopic methods. X-Ray structure analysis of 1 revealed the presence of dinuclear [V2O2(O2)2(C2H2O3)2]2− anions with a (chemical structure) bridging core and six coordinated vanadium(V) atoms in a distorted pentagonal pyramidal array. Received July 12, 1999. Accepted (revised) October 28, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号