首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fast method to detect and sequence photomodified oligodeoxynucleotides (ODNs) by exonuclease digestion and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is reported. Upon treatment of modified ODNs with both phosphodiesterase I and phosphodiesterase II, the digestion stops at the sites of photomodification. Post-source decay (PSD) of MALDI-produced ions from two enzymatic digestion end products distinguishes isomers such as 5'-d(T[cis-syn]TAAGC) and 5'-d(CGAAT[cis-syn]T), which have symmetrical or identical compositions at the 3' and 5' ends, respectively. Studies have also been done to follow the kinetics for enzyme degradation of photomodified ODNs. The calculated rate constants from a mathematical treatment of the time-dependent MALDI data clearly show that the enzymatic digestion rate slows as the enzyme approaches the modified site.  相似文献   

2.
A trinuclear copper complex, [Cu(3)(II)(L)(H(2)O)(3)(NO(3))(2)](NO(3))(4).5H(2)O (1) (L = 2,2',2' '-tris(dipicolylamino)triethylamine), with pyridyl and alkylamine coordination exhibits a remarkable ability to promote specific strand scission at junctions between single- and double-stranded DNA. Strand scission occurs on the 3' overhang at the junction of a hairpin or frayed duplex structure and is not dependent on the identity of the base at which cleavage occurs. Target recognition minimally requires a purine at the first unpaired position and a guanine at the second unpaired position on the 5' strand. Incorporation of the necessary recognition elements into an otherwise unreactive junction resulted in specific strand scission at that new target and helped to confirm the predictive nature of this complex. Selective strand scission requires both a reductant and dioxygen, suggesting activation of O(2) by the reduced form of 1. The reaction utilizing the trinuclear complex does not appear to involve a diffusible radical species as suggested by its high specificity of target oxidation and its lack of sensitivity to radical quenching agents. Comparisons between the trinuclear copper complex, mononuclear analogues of 1, and [Cu(OP)(2)](2+) (OP = 1,10-phenanthroline) indicate that recognition and reactivity described in this report are dependent on the multiple metal ions within the same complex which together support its unique activity.  相似文献   

3.
The structure of an unusual covalent adduct formed by thiol-activated neocarzinostatin chromophore (NCS-chrom) and a RNA-DNA hybrid having an overhang of four unpaired residues at the 3'-end of the RNA strand has been elucidated by MS and NMR spectroscopic analyses. Unlike previously characterized adducts formed by NCS-chrom on the sugar residue of the DNA target, this adduct has been found to be on one of the uracil bases in the RNA overhang. Covalent linkage is between C-6 of the post-activated NCS-chrom and C-5 of the uracil. A novel mechanism involving adduction of the NCS-chrom C-6 radical, generated by 2-mercaptoethanol activation, to C-5 of the uracil at the U9 position of the RNA 11-mer, oxidation by dioxygen, reduction by the thiol, and subsequent dehydration is proposed for adduct formation.  相似文献   

4.
Proteomics requires an optimized level of sample-processing, including a minimal sample-processing time and an optimal peptide recovery from protein digests, in order to maximize the percentage sequence coverage and to improve the accuracy of protein identification. The conventional methods of protein characterization from one-dimensional or two-dimensional gels include the destaining of an excised gel piece, followed by an overnight in-gel enzyme digestion. The aims of this study were to determine whether: (1) stained gels can be used without any destaining for trypsin digestion and mass spectrometry (MS); (2) tryptic peptides can be recovered from a matrix-assisted laser desorption/ionization (MALDI) target plate for a subsequent analysis with liquid chromatography (LC) coupled to an electrospray ionization (ESI) quadrupole ion trap MS; and (3) an overnight in-gel digestion is necessary for protein characterization with MS. These three strategies would significantly improve sample throughput. Cerebrospinal fluid (CSF) was the model biological fluid used to develop these methods. CSF was desalted by gel filtration, and CSF proteins were separated by two-dimensional gel electrophoresis (2DGE). Proteins were visualized with either silver, Coomassie, or Stains-All (counterstained with silver). None of the gels was destained. Protein spots were in-gel trypsin digested, the tryptic peptides were purified with ZipTip, and the peptides were analyzed with MALDI and ESI MS. Some of the samples that were spotted onto a wax-coated MALDI target plate were recovered and analyzed with ESI MS. All three types of stained gels were compatible with MALDI and ESI MS without any destaining. In-gel trypsin digestion can be performed in only 10-60 min for protein characterization with MS, the sample can be recovered from the MALDI target plate for use in ESI MS, and there was a 90% reduction in sample-processing time from overnight to ca. 3 h.  相似文献   

5.
The compound [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) (D(1) = dinucleating ligand with two tris(2-pyridylmethyl)amine units covalently linked in their 5-pyridyl positions by a -CH(2)CH(2)- bridge) selectively promotes cleavage of DNA on oligonucleotide strands that extend from the 3' side of frayed duplex structures at a site two residues displaced from the junction. The minimal requirements for reaction include a guanine in the n (i.e. first unpaired) position of the 3' overhang adjacent to the cleavage site and an adenine in the n position on the 5' overhang. Recognition and strand scission are independent of the nucleobase at the cleavage site. The necessary presence of both a reductant and dioxygen indicates that the intermediate responsible for cleavage is produced by the activation of dioxygen by a copper(I) form of the dinuclear complex. The lack of sensitivity to radical quenching agents and the high level of site selectivity in scission suggest a mechanism that does not involve a diffusible radical species. The multiple metal center exhibits a synergy to promote efficient cleavage as compared to the action of a mononuclear analogue [Cu(II)(TMPA)(H(2)O)](ClO(4))(2) (TMPA = tris(2-pyridylmethyl)amine) and [Cu(OP)(2)](2+) (OP = 1,10-phenanthroline) at equivalent copper ion concentrations. The dinuclear complex, [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4), is even capable of mediating efficient specific strand scission at concentrations where [Cu(OP)(2)](2+) does not detectably modify DNA. The unique coordination and reactivity properties of [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) are critical for its efficiency and site selectivity since an analogue, [Cu(II)(2)(DO)(Cl(2))](ClO(4))(2), where DO is a dinucleating ligand very similar to D(1), but with a -CH(2)OCH(2)- bridge, exhibits only nonselective cleavage of DNA. The differences in the reactivity of these two complexes with DNA and their previously established interaction with dioxygen suggest that specific strand scission is a function of the orientation of a reactive intermediate.  相似文献   

6.
利用毛细管作为酶固定化的载体,将酶直接键合到毛细管内壁,制成毛细管纳升反应器,结合质谱分析水解产物,获得了蛋白质的肽谱.实验发现,以毛细管为反应器后,蛋白质肽谱分析所需量大大减少,只需10-13mol,甚至几个10-15mol的量就可满足分析要求.  相似文献   

7.
We demonstrate here that MTase-modified DNA can undergo the Staudinger ligation with triarylphosphines derivatized with phenanthroline. Presentation of these duplexes with Cu(II) and 3-mercaptopropionic acid leads to strand scission proximal to the MTase recognition site. By virtue of their ability to use a synthetic azide-bearing cofactor, M.TaqI and M.HhaI produce a DNA lesion that induces scission 5' to the base modified by the enzyme. This chemistry represents a new approach by which regions of DNA methylation can be rapidly identified on the basis of DNA damage.  相似文献   

8.
The Escherichia coli single‐stranded DNA binding protein (SSB) selectively binds single‐stranded (ss) DNA and participates in the process of DNA replication, recombination and repair. Different binding modes have previously been observed in SSB?ssDNA complexes, due to the four potential binding sites of SSB. Here, chemical cross‐linking, combined with high‐mass matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS), is used to determine the stoichiometry of the SSB?ssDNA complex. SSB forms a stable homotetramer in solution, but only the monomeric species (m/z 19 100) can be detected with standard MALDI‐MS. With chemical cross‐linking, the quaternary structure of SSB is conserved, and the tetramer (m/z 79 500) was observed. We found that ssDNA also functions as a stabilizer to conserve the quaternary structure of SSB, as evidenced by the detection of a SSB?ssDNA complex at m/z 94 200 even in the absence of chemical cross‐linking. The stability of the SSB?ssDNA complex with MALDI strongly depends on the length and strand of oligonucleotides and the stoichiometry of the SSB?ssDNA complex, which could be attributed to electrostatic interactions that are enhanced in the gas phase. The key factor affecting the stoichiometry of the SSB?ssDNA complex is how ssDNA binds to SSB, rather than the protein‐to‐DNA ratio. This further suggests that detection of the complex by MALDI is a result of specific binding, and not due to non‐specific aggregation in the MALDI plume. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Peptide nucleic acid (PNA) probes have been synthesized and targeted to quadruplex DNA. UV-vis and CD spectroscopy reveal that the quadruplex structure of the thrombin binding aptamer (TBA) is disrupted at 37 degrees C by a short PNA probe. The corresponding DNA probe fails to bind to the stable secondary structure at this temperature. Thermal denaturation experiments indicate surprisingly high thermal and thermodynamic stabilities for the PNA-TBA hybrid. Our results point to the nonbonded nucleobase overhangs on the DNA as being responsible for this stability. This "overhang effect" is found for two different PNA-DNA sequences and a variety of different overhang lengths and sequences. The stabilization offered by the overhangs assists the PNA in overcoming the stable secondary structure of the DNA target, an effect which may be significant in the targeting of biological nucleic acids, which will always be much longer than the PNA probe. The ability of PNA to invade a structured DNA target expands its potential utility as an antigene agent or hybridization probe.  相似文献   

10.
Real-time surface plasmon resonance (SPR) imaging measurements of surface enzymatic reactions on DNA microarrays are analyzed using a kinetics model that couples the contributions of both enzyme adsorption and surface enzyme reaction kinetics. For the case of a 1:1 binding of an enzyme molecule (E) to a surface-immobilized substrate (S), the overall enzymatic reaction can be described in terms of classical Langmuir adsorption and Michaelis-Menten concepts and three rate constants: enzyme adsorption (k(a)), enzyme desorption (k(d)) and enzyme catalysis (k(cat)). In contrast to solution enzyme kinetics, the amount of enzyme in solution is in excess as compared to the amount of substrate on the surface. Moreover, the surface concentration of the intermediary enzyme-substrate complex (ES) is not constant with time, but goes to zero as the reaction is completed. However, kinetic simulations show that the fractional surface coverage of ES on the remaining unreacted sites does reach a steady-state value throughout the course of the surface reaction. This steady-state value approaches the Langmuir equilibrium value for cases where k(a)[E] > k(cat). Experiments using the 3' --> 5' exodeoxyribonuclease activity of Exonuclease III on double-stranded DNA microarrays as a function of temperature and enzyme concentration are used to demonstrate how this model can be applied to quantitatively analyze the SPR imaging data.  相似文献   

11.
The digestion of glycopeptides with endoglycosidases can be used in the process of their structural characterization, and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is often used to analyze the products of these digestions. In the currently accepted protocol for the endoglycosidase digestion of glycopeptides on the MALDI target, the target must be incubated at 37 degrees C, and an hour or more is needed for digestion. We have modified the procedure so that the process can be performed at room temperature in 5 to 15 min, and digestions are performed in the presence of a MALDI matrix. The endoglycosidases used for digestion were endoglycosidase H and peptide-N-glycosidase F. Glycopeptides from asialofetuin and endopolygalacturonase (EPG) II were used as standards because their glycan structures have been previously characterized. Glycopeptides with unknown glycan structures were also digested, including glycopeptides from pectate lyase, EPG I, and pectin methylesterase from Aspergillus niger.  相似文献   

12.
The 5'-3' exonuclease activity of DNA polymerase was utilized in the polymerase chain reaction system to generate a specific signal concomitant with amplification. These signals were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method obviates the need to perform extensive DNA purification of reaction products that is often necessary for detecting larger DNA molecules by mass spectrometry. Oligonucleotides complementary to the internal region of the amplicon are degraded by the 5'-3' exonuclease activity and the degradation products are analyzed by MALDI mass spectrometry. We refer to this assay as the Exo-taq assay or probe degradation assay. This method should be amenable to automation.  相似文献   

13.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

14.
A heptamer composed of C5-(1-propynyl) pyrimidines (Y(p)'s) is a potent and specific antisense agent against the mRNA of SV40 large T antigen (Wagner, R. W.; Matteucci, M. D.; Grant, D.; Huang, T.; Froehler, B. C. Nat. Biotechnol. 1996, 14, 840-844). To characterize the role of the propynyl groups in molecular recognition, thermodynamic increments associated with substitutions in DNA:RNA duplexes, such as 5'-dCCUCCUU-3':3'-rGAGGAGGAAAU-5', have been measured by UV melting experiments. For nucleotides tested, an unpaired dangling end stabilizes unmodified and propynylated duplexes similarly, except that addition of a 5' unpaired rA is 1.4 kcal/mol more stabilizing on the propynylated, PODN:RNA, duplex than on the DNA:RNA duplex. Free energy increments for addition of single propynyl groups range from 0 to -4.0 kcal/mol, depending on the final number and locations of substitutions. A preliminary model for predicting the stabilities of Y(p)-containing hybrid duplexes is presented. Eliminating one amino group, and therefore a hydrogen bond, by substituting inosine (I) for guanosine (G), to give 5'-dC(p)C(p)U(p)C(p)C(p)U(p)U(p)-3':3'-rGAGIAGGAAAU-5', destabilizes the duplex by 3.9 kcal/mol, compared to 1.7 kcal/mol for the same change within the unpropynylated duplex. This 2.2 kcal/mol difference is eliminated by removing a single propynyl group three base pairs away. CD spectra suggest that single propynyl deletions within the PODN:RNA duplex have position-dependent effects on helix geometry. The results suggest long-range cooperativity between propynyl groups and provide insights for rationally programming oligonucleotides with enhanced binding and specificity. This can be exploited in developing technologies that are dependent upon nucleic acid-based molecular recognition.  相似文献   

15.
This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.  相似文献   

16.
Protein ions, after mass spectrometric separation, can be soft-landed into liquid surfaces with preservation of their native structures. Retention of biological activity is strongly favored in glycerol-based surfaces but not in self-assembled monolayer solid surfaces. Soft-landing efficiency for multiply-charged hexokinase ions was found to be some four times higher for a glycerol/fructose liquid surface than for a fluorinated self-assembled monolayer surface. Soft-landing into liquid surfaces is also shown to allow (1) protein purification, (2) on-surface identification of the soft-landed material using MALDI, and (3) protein identification by in-surface tryptic digestion. Pure lysozyme was successfully isolated from different mixtures including an oxidized, partially decomposed batch of the protein and a partial tryptic digest. Liquid glycerol/carbohydrate mixtures could be used directly to record MALDI spectra on the soft-landed compounds provided they were fortified in advance with traditional MALDI matrices such as p-nitroaniline and alpha-cyano-4-hydroxycinnamic acid. Various proteins were soft-landed and detected on-target using these types of liquid surface. Soft-landing of multiply-charged lysozyme ions onto fluorinated self-assembled monolayer surfaces was found to occur with a limited amount of neutralization, and trapped multiply-charged ions could be desorbed from the surface by laser desorption. Initial data is shown for a new approach to protein identification that combines top-down and bottom-up approaches by utilizing protein ion soft-landing from a protein mixture, followed by tryptic digestion of the landed material and detection of characteristic tryptic fragments by MALDI.  相似文献   

17.
The molecule Ni(3)(dpa)(4)Cl(2) (1) can be oxidized by AgPF(6) to give crystalline Ni(3)(dpa)(4)(PF(6))(3) (2) (dpa is the anion of di(2-pyridyl)amine). This reversible oxidation occurs at a potential of 0.908 V vs Ag/AgCl electrochemically. The X-ray structure of 2 shows that the oxidation causes a major structural change (even though it is reversible), namely, a contraction of the Ni-Ni distances from ca. 2.43 A to 2.284[1] A. In addition, the electronic structure changes so that from four unpaired electrons in 1 there is only one in 2. From these remarkable results, it is inferred that while 1, and all higher homologues with 5, 7, 9,... nickel atoms are poor electronic conductors, the cations obtainable from them may be much better ones. This in turn means that by controlling the oxidation state electrochemically, these molecules may be able to function as nanoscale diodes.  相似文献   

18.
By using high-resolution NMR spectroscopy, the structures of a natural short interfering RNA (siRNA) and of several altritol nucleic acid (ANA)-modified siRNAs were determined. The interaction of modified siRNAs with the PAZ domain of the Argonaute 2 protein of Drosophila melanogaster was also studied. The structures show that the modified siRNA duplexes (ANA/RNA) adopt a geometry very similar to the naturally occurring A-type siRNA duplex. All ribose residues, except for the 3' overhang, show 3'-endo conformation. The six-membered altritol sugar in ANA occurs in a chair conformation with the nucleobase in an axial position. In all siRNA duplexes, two overhanging nucleotides at the 3' end enhance the stability of the first neighboring base pair by a stacking interaction. The first overhanging nucleotide has a rather fixed position, whereas the second overhanging nucleotide shows larger flexibility. NMR binding studies of the PAZ domain with ANA-modified siRNAs demonstrate that modifications in the double-stranded region of the antisense strand have some small effects on the binding affinity as compared with the unmodified siRNA. Modification of the 3' overhang with thymidine (dTdT) residues shows a sixfold increase in the binding affinity compared with the unmodified siRNA (relative binding affinity of 17% compared with dTdT-modified overhang), whereas modification of the 3' overhang with ANA largely decreases the binding affinity.  相似文献   

19.
Our previous work has demonstrated that reversed-phase chromatographic micro-beads can be used to capture proteins from complex biological matrices and the surface-bound proteins can be enzymatically digested for protein identification by mass spectrometry (MS). Here we examine the peptides generated from digestion of proteins bound to various types of micro-bead surfaces in order to determine the effects of surface chemistry and surface morphology on the digestion process. Detailed examinations of site cleavages and sequence coverage are carried out for a tryptic digestion of cytochrome c adsorbed on reversed-phase polystyrene divinylbenzene (Poros R2 beads) versus C(18) bonded-phase silica beads. It is shown that although the surface does not completely hinder the digestion of cleavage sites of the protein, the digestion products are clearly different than those obtained from a solution digest. Specifically, a partial digestion results from surface digestion, resulting in a greater number of missed cleavages than a comparable solution digest. Subsequent comparisons of peptide mass maps generated from the digestion of various proteins on surfaces with altering chemistry (C(4), C(8), C(18), and R2 beads), or with different surface morphology, were performed. The results reveal that surface chemistry plays only a minor role in affecting the peptide mass maps, and surface morphology had no noticeable effects on the resulting peptide mass maps. It is also shown that the mass spectrometric detection method used to analyze the digested peptides can significantly influence the information content on cleavage sites and the extent of sequence coverage. The use of a combination of MALDI, LC/off-line MALDI, and LC/ESI MS is demonstrated to be crucial in revealing subtle changes in the peptide mass maps.  相似文献   

20.
A chemical modification approach combined with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was used to identify the active site serine residue of an extracellular lipase from Streptomyces rimosus R6-554W. The lipase, purified from a high-level overexpressing strain, was covalently modified by incubation with 3,4-dichloroisocoumarin, a general mechanism-based serine protease inhibitor. MALDI time-of-flight (TOF) mass spectrometry was used to probe the nature of the intact inhibitor-modified lipase and to clarify the mechanism of lipase inhibition by 3,4-dichloroisocoumarin. The stoichiometry of the inhibition reaction revealed that specifically one molecule of inhibitor was bound to the lipase. The MALDI matrix 2,6-dihydroxyacetophenone facilitated the formation of highly abundant [M + 2H](2+) ions with good resolution compared to other matrices in a linear TOF instrument. This allowed the detection of two different inhibitor-modified lipase species. Exact localization of the modified amino acid residue was accomplished by tryptic digestion followed by low-energy collision-induced dissociation peptide sequencing of the detected 2-(carboxychloromethyl)benzoylated peptide by means of a MALDI quadrupole ion trap reflectron TOF instrument. The high sequence coverage obtained by this approach allowed the confirmation of the site specificity of the inhibition reaction and the unambiguous identification of the serine at position 10 as the nucleophilic amino acid residue in the active site of the enzyme. This result is in agreement with the previously obtained data from multiple sequence alignment of S. rimosus lipase with different esterases, which indicated that this enzyme exhibits a characteristic Gly-Asp-Ser-(Leu) motif located close to the N-terminus and is harboring the catalytically active serine residue. Therefore, this study experimentally proves the classification of the S. rimosus lipase as GDS(L) lipolytic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号