首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Electrical devices involve different types of diode in prospective electronics is of great importance. In this study, p-type Si surface was covered with thin film of TiO2 dispersion in H2O to construct p-Si/TiO2/Al Schottky barrier diode (D1) and the other one with TiO2 dispersion doped with zirconium to construct p-Si/TiO2-Zr/Al diode (D2) by drop-casting method in the same conditions. Electrical properties of as-prepared diodes and effect of zirconium as a dopant were investigated. Current–voltage (IV) characteristics of these devices were measured at ambient conditions. Some parameters including ideality factor (n), barrier height (ΦB0), series resistance (Rs) and interface state density (Nss) were calculated from IV behaviours of diodes. Structural comparisons were based on SEM and EDX measurements. Experimental results indicated that electrical parameters of p-Si/TiO2/Al Schottky device were influenced by the zirconium dopant in TiO2.  相似文献   

2.
TiO2 and Al‐doped TiO2 (ATO) films were grown on Ir substrates by atomic layer deposition using O3 as the oxygen source. With increasing O3 feeding time, the crystalline structure of the TiO2 films was transformed from anatase to rutile. Above an O3 feeding time of 35 s, the films crystallized as only rutile due to the formation of IrO2 layer at the interface. The TiO2 and ATO films showed higher dielectric constants of 78 and 51, respectively. The films on Ir showed superior leakage properties compared to the films on Ru due to the high work‐function of Ir. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Sulfur was embedded in atomic‐layer‐deposited (ALD) HfO2 films grown on Ge substrate by annealing under H2S gas before and after HfO2 ALD. The chemical states of sulfur in the film were examined by S K‐edge X‐ray absorption spectroscopy. It was revealed that the valences of S‐ions were mostly –2 at Ge/HfO2 interface (GeSx or HfO2–ySy to passivate the interface), while they were mostly +6 in HfO2 layers (sulfates; HfO2–z(SO4)z). The leakage current density in post‐deposi‐tion‐treated film was lower than that in pre‐deposition‐treated one. This suggests that the passivation of defects in oxide layer by sulfate ions is more effective to lower the leakage current rather than the interface defect passivation by S2– ions. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
冯倩  郝跃  岳远征 《物理学报》2008,57(3):1886-1890
在研制AlGaN/GaN HEMT器件的基础上,采用ALD法制备了Al2O3 AlGaN/GaN MOSHEMT器件.通过X射线光电子能谱测试表明在AlGaN/GaN异质结材料上成功淀积了Al2O3薄膜.根据对HEMT和MOSHEMT器件肖特基电容、器件输出以及转移特性的测试进行分析发现:所制备的Al2O3薄膜与AlGaN外延层间界面态密度较小,因而MOSHEMT器件呈现出较 关键词: 2O3')" href="#">Al2O3 ALD GaN MOSHEMT  相似文献   

5.
刘芳  王涛  沈波  黄森  林芳  马楠  许福军  王鹏  姚建铨 《中国物理 B》2009,18(4):1614-1617
This paper investigates the behaviour of the reverse-bias leakage current of the Schottky diode with a thin Al inserting layer inserted between Al0.245Ga0.755 N/GaN heterostructure and Ni/Au Schottky contact in the temperature range of 25-350°C. It compares with the Schottky diode without Aluminium inserting layer. The experimental results show that in the Schottky diode with Al layer the minimum point of I-V curve drifts to the minus voltage, and with the increase of temperature increasing, the minimum point of I-V curve returns the 0 point. The temperature dependence of gate-leakage currents in the novelty diode and the traditional diode are studied. The results show that the Al inserting layer introduces interface states between metal and Al0.245Ga0.755N. Aluminium reacted with oxygen formed Al2O3 insulator layer which suppresses the trap tunnelling current and the trend of thermionic field emission current. The reliability of the diode at the high temperature is improved by inserting a thin Al layer.  相似文献   

6.
In this study, we carried out experiments and molecular dynamics simulations to identify the effect of Fe doping on the hydrophobicity of a titanium dioxide film. TiO2 and Fe-doped TiO2 films were fabricated in situ by atomic layer deposition without annealing. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterise the crystal structure and elemental composition. Iron doping resulted in the TiO2 becoming more hydrophobic at a macroscopic level, as estimated by atomic force microscopy observations and static contact angle measurements. Furthermore, the effect of iron doping on the structure and kinetics of water molecules on the exterior of TiO2 were studied by molecular dynamics simulations. On the basis of the XPS results, the Fe-TiO2 surface matrix has a Ti:Fe ratio of 36:5. In addition, the density distribution of oxygen and hydrogen atoms indicate that interfacial water molecules enter the Fe-TiO2 film more easily and hydrogen atoms in the water molecules are oriented upward at the interface. The self-diffusion coefficients indicate that iron doping makes the TiO2 more hydrophobic, which is consistent with the macroscopic test results.  相似文献   

7.
Mechanisms of leakage current have been investigated in the capacitor consisting of a Ba0.6Sr0.4TiO3 thin film, a Pt top electrode, and a Nb-doped SrTiO3 (STON) bottom electrode. The leakage current shows asymmetric behavior for different bias voltage. For the Pt electrode negatively biased, the leakage current can be explained by modified Schottky emission mechanism, and the barrier height is obtained as 0.44 eV. For the Pt electrode positively biased, the leakage current shows a space-charge-limited current behavior. The trap in dielectric film is regarded as deep traps, and the density of trapped carrier is estimated as about 3.2×1023/m3. PACS 77  相似文献   

8.
In this study, the effects of high permittivity interfacial Bi4Ti3O12 (BTO) layer deposition on the main electrical parameters; such as barrier height, series resistance, rectifying ratio, interface states and shunt resistance, of Al/p-Si structures are investigated using the current–voltage (IV) and admittance measurements (capacitance–voltage, CV and conductance–voltage, G/ωV) at 1 MHz and room temperature. IV characteristics revealed that, due to BTO layer deposition, series resistance values that were calculated by both Ohm's law and Cheung's method decreased whereas shunt resistance values increased. Therefore, leakage current value decreased significantly by almost 35 times as a result of high permittivity interfacial BTO layer. Moreover, rectifying ratio was improved through BTO interfacial layer deposition. IV data indicated that high permittivity interfacial BTO layer also led to an increase in barrier height. Same result was also obtained through CV data. Obtained results showed that the performance of the device is considerably dependent on high permittivity BTO interfacial layer.  相似文献   

9.
We report on the temperature-dependent electrical characteristics of Er/p-InP Schottky barrier diodes. The current–voltage (I–V) and capacitance–voltage (C–V) measurements have been carried out in the temperature range of 300–400 K. Using thermionic emission (TE) theory, the zero-bias barrier height (Φbo) and ideality factor (n) are estimated from I–V characteristics. It is observed that there is a decrease in n and an increase in the Φbo with an increase in temperature. The barrier height inhomogenity at the metal/semiconductor (MS) interface resulted in Gaussian distribution of Φbo and n. The laterally homogeneous Schottky barrier height value of approximately 1.008 eV for the Er/p-InP Schottky barrier diodes is extracted from the linear relationship between the experimental zero-bias barrier heights and ideality factors. The series resistance (Rs) is calculated by Chenug's method and it is found that it increases with the decrease in temperature. The reverse-bias leakage current mechanism of Er/p-InP Schottky diode is investigated. Both Poole–Frenkel and Schottky emissions are described and discussed. Furthermore, capacitance–voltage (C–V) measurements of the Er/p-InP Schottky contacts are also carried out at room temperature in dark at different frequencies of 10, 100 and 1000 kHz. Using Terman's method, the interface state density is calculated for Er/p-InP Schottky diode at different temperatures.  相似文献   

10.
《Current Applied Physics》2015,15(9):1027-1031
We report on the effect of oxygen annealing for GaN surface on the Schottky barrier configuration and leakage current in Ni-AlGaN/GaN Schottky barrier diodes. After oxygen annealing, their turn-on voltage and reverse-bias leakage current characteristics are significantly improved due to a reduction in the Schottky barrier height (SBH) and suppression in the surface states respectively. Interface state density extracted from the Terman method was reduced by 2 orders of magnitude. X-ray photoelectron spectroscopy measurements show that the oxygen annealing induces Ga2O3 on the GaN surface. The formation of Ga2O3 reduces the interface state density as well as lowers the SBH through the modification of hybridized metal induced gap states.  相似文献   

11.
Using polarization field effect-based thermionic field emission (PFE-TFE) model based on current–voltage–temperature data, possible carrier transport mechanisms for Pt/Au and Cr/Pd Schottky contacts to Al0.25Ga0.75N/GaN layers were investigated. Thermionic emission (TE) model was also investigated to compare to the PFE-TFE. It was shown that Schottky barrier heights (SBHs) are significantly affected by a polarization field-induced carrier density of the AlGaN layer. In addition, relatively little temperature dependence on the leakage current density of both contacts was found, which is in good agreement with the PFE-TFE model. The results indicate that the TFE is responsible for the current flow across the metal/AlGaN–GaN interface at T ≥ 293 K.  相似文献   

12.
The characteristics of Al2O3 film grown by atomic‐layer deposition as blocking layer with and without fluorine plasma treatment were investigated based on a capacitor structure of Al/Al2O3/TaON/SiO2/Si. The physical structure was studied by transmission electron microscopy, and the chemical composition of the blocking layer was analyzed by X‐ray photoelectron spectroscopy and secondary ion mass spectroscopy. Moreover, the surface roughness of the blocking layer was investigated by atomic force microscopy. Compared with a capacitor with Al2O3 blocking layer, the one with fluorinated Al2O3 displayed higher programming/erasing speeds, better endurance property and better charge retention characteristic because the fluorination could reduce excess oxygen and traps in the blocking layer, thus forming a larger barrier height at the interface between the charge‐trapping layer and the blocking layer. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We have investigated the role of amorphous titanium oxide film in the reliable bipolar resistive switching of Al/TiO2/Al resistive random access memory devices. As TiO2 deposition temperature decreased, a more stable endurance characteristic was obtained. We proposed that the degradation of the bipolar resistive switching property of Al/TiO2/Al devices is closely related to the imperfect migration of oxygen ions between the top insulating interface layer and the oxygen-deficient titanium oxide during the set and reset operations. In addition, the dependence of the TiO2 film thickness on the switching property was also studied. As the thickness of the film increased, a reduction in the resistance of the high resistance state rapidly appeared. We attribute the improved endurance performance of thin and low-temperature grown TiO2 devices to the amorphous state with a low film density.  相似文献   

14.
I-V-characteristics have been measured for Au−TiO2−Ag structures with TiO2 layers of 30 and 180 nm thickness. The TiO2 films were grown by atomic layer deposition (ALD) technique. In the case of negative bias on the Au electrode, the conduction currents through TiO2 layers follow the Fowler-Nordheim formula for field emission over several orders of magnitude. The bulk of the currents may be attributed to tunnelling, seemingly through a Schottky barrier at the Au−TiO2 junction. In the case of reversed polarity the currents are also observed, but cannot be interpreted as tunnelling.  相似文献   

15.
When S-termination on a Ge(1 0 0) surface was desorbed at an elevated temperature and an atomic layer deposition (ALD) HfO2 film was deposited, interfacial thickness was less than 1 nm. As a result, the equivalent oxide thickness (EOT) of the stack on the initially S-terminated surface was thinner than that deposited on the O3-oxidized surface, while HfO2 film thickness was almost identical on both surfaces. Nevertheless, the HfO2 stack on the initially S-terminated surface exhibited improved leakage current characteristics due to an increase in barrier height. Its thinner but robust interface will contribute to the scaling down of gate oxide integrity.  相似文献   

16.
CoSi2 nanostructures were formed through thermal agglomeration by annealing ultrathin Co film on Si substrate at high temperatures. The characteristics of the Schottky diodes with CoSi2 nanostructures capped by a Pt layer were measured and fitted using thermionic emission theory. All the diodes have a ideality factor less than 1.1. The results show that the Schottky barrier height of these diodes significantly decreases as the annealing temperature for CoSi2 agglomeration increases. The barrier height lowering is correlated with the agglomeration of CoSi2 film and the formation of CoSi2 nano-islands. The thermal field emission may be the major reason to cause barrier lowering. Although the Schottky contact interface consists of both CoSi2 nano-islands and Pt film whose individual contact barrier height to Si is very different, the current-voltage-temperature measurements reveal that the interface homogeneity is not degraded as expected. The study demonstrates that the CoSi2 nanostructures can both lower the Schottky barrier height and form an ideal Schottky contact with a Pt capping layer.  相似文献   

17.
Crystalline rutile TiO2 films were grown by atomic layer deposition on oxidized Ru electrodes using a titanium methoxide as the metal precursor and O3 as the oxidant. A protective layer of ~0.3 nm TiO2 grown with H2O as the oxidant was first deposited in order to avoid etching of the Ru bottom electrode by the O3 used for the growth of the TiO2 (bulk) layer. Electrical evaluation of the capacitor stacks with TiO2 as dielectric, RuO2/Ru and Pt as the bottom and top electrodes respectively, resulted in superior characteristics of the rutile phase as compared to the anatase. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The process of integrated-circuit contact formation based on Ti–Co alloy with low content of cobalt has been investigated. By AES and XRD it is shown that nitrogen doping of the alloy film during magnetron deposition and its subsequent annealing at 800–850°C allow simultaneously to obtain a CoSi2 contact layer and a diffusion barrier layer on the basis of TiN. Electrical characteristics of Schottky barrier and ohmic contacts have been studied.  相似文献   

19.
We report the first demonstration of n-type III–V metal-semiconductor field-effect transistors (nMESFETs) with IV group material hetero-junction source and drain (S/D) technology. A selective epitaxial growth of germanium (Ge) in the recessed gallium arsenide (GaAs) S/D regions is successfully developed using ultra-high vacuum chemical vapor deposition (UHVCVD) system. The dual channel structure includes an additional 10-nm higher mobility n-In0.2Ga0.8As layer on n-GaAs channel and is introduced to further improve the device performance. The n-MESFET, combining embedded-Ge S/D with In0.2Ga0.8As/GaAs channel, exhibits good transfer properties with a drain current on/off ratio of approximately 103. Due to the small barrier height of Ti/In0.2Ga0.8As Schottky contact, a lattice-matched wide bandgap In0.49Ga0.51P dielectric layer is also integrated into the device architecture to build a higher electron Schottky barrier height (SBH) for gate leakage current reduction. The Ti/In0.49Ga0.51P/n-In0.2Ga0.8As Schottky diode shows a comparable leakage level to Ti/n-GaAs with 2 × 10?2 A/cm2 at a gate voltage of ?2.0 V.  相似文献   

20.
《Current Applied Physics》2020,20(2):293-297
Electrical passivation has a significant effect on metal-semiconductor (MS) device operations including performance and reliability. In this study, the improvement in performance of Ni/GaN Schottky diodes (SDs) through an ultraviolet/ozone (UV/O3) interface treatment is investigated and the mechanism of carrier conduction at the MS junction interfaces is analyzed. The formation of surface oxide layer at the MS interface through the UV/O3 treatment is confirmed by the measurements using X-ray photoelectron spectroscopy, contact angle, and atomic force microscopy. The atomic intensity and surface energy increased and surface roughness improved through the implementation of oxide layer. Electrical measurements reveal reduced leakage and improved breakdown voltage and are used to determine the Schottky barrier height and Richardson constant of the Ni/GaN MS SDs. The enhancement in the entire performance of the MS SDs is attributed to the passivation of defect centers at the dislocation-related pits through the formation of oxide layer with the UV/O3 treatment, which thereby improves the carrier transfer properties of Ni/GaN SDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号