首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we demonstrate industrially feasible large‐area solar cells achieving energy conversion efficiency up to 21.63% on p‐type boron doped multicrystalline Si wafers. Advanced light trapping, passivation and hydrogenation technology are used to achieve excellent light absorption with very low surface recombination velocity. The bulk lifetime of the multi‐crystalline Si wafers used for the fabrication exceeds 500 μs after optimized gettering and hydrogenation processes. The high bulk lifetime and excellent surface passivation enable Voc to exceed 670 mV. The metallization process is carried out by screen printing and firing in a conventional belt furnace. Detailed performance parameters and quantum efficiency of the cells will be illustrated in the paper. In addition, free energy loss analysis and cell simulation are also performed using the control parameters measured during cell fabrication processes.  相似文献   

2.
Light‐induced degradation (LID) is a well‐known problem faced by p‐type Czochralski (Cz) monocrystalline silicon (mono‐Si) wafer solar cells. In mono‐Si material, the physical mechanism has been traced to the formation of recombination active boron‐oxygen (B–O) complexes, which can be permanently deactivated through a regeneration process. In recent years, LID has also been identified to be a significant problem for multicrystalline silicon (multi‐Si) wafer solar cells, but the exact physical mechanism is still unknown. In this work, we study the effect of LID in two different solar cell structures, aluminium back‐surface‐field (Al‐BSF) and aluminium local back‐surface‐field (Al‐LBSF or PERC (passivated emitter and rear cell)) multi‐Si solar cells. The large‐area (156 mm × 156 mm) multi‐Si solar cells are light soaked under constant 1‐sun illumination at elevated temperatures of 90 °C. Our study shows that, in general, PERC multi‐Si solar cells degrade faster and to a greater extent than Al‐BSF multi‐Si solar cells. The total degradation and regeneration can occur within ~320 hours for PERC cells and within ~200 hours for Al‐BSF cells, which is much faster than the timescales previously reported for PERC cells. An important finding of this work is that Al‐BSF solar cells can also achieve almost complete regeneration, which has not been reported before. The maximum degradation in Al‐BSF cells is shown to reduce from 2% (relative) to an average of 1.5% (relative) with heavier phosphorus diffusion.  相似文献   

3.
In this study, metal‐assisted etching (MAE) with nitric acid (HNO3) as a hole injecting agent has been employed to texture multi‐crystalline silicon wafers. It was previously proven that addition of HNO3 enabled control of surface texturing so as to form nano‐cone shaped structures rather than nanowires. The process parameters optimized for optically efficient texturing have been applied to multi‐crystalline wafers. Fabrication of p‐type Al:BSF cells have been carried out on textured samples with thermal SiO2/PECVD‐SiNx stack passivation and screen printed metallization. Firing process has been optimized in order to obtain the best contact formation. Finally, jsc enhancement of 0.9 mA/cm2 and 0.6% absolute increase in the efficiency have been achieved. This proves that the optimized MAE texture process can be successfully used in multi‐crystalline wafer texturing with standard passivation methods.

JV curves and SEM images of the nano and iso‐textured samples. jsc enhancement of 0.9 mA/cm2 together with 0.6% absolute efficiency gain was observed on nano‐textured samples.  相似文献   


4.
Multicrystalline silicon wafer solar cells reveal performance‐ reducing defects by luminescence. X‐ray fluorescence spectra are used to investigate the elemental constituents from regions of solar cells yielding reverse‐bias or sub‐bandgap luminescence from defects. It is found that a higher concentration of metals is present in regions yielding reverse‐bias electroluminescence than in regions yielding sub‐bandgap electroluminescence. This suggests, dislocations do not create strong breakdown currents in the absence of impurity precipitates.

  相似文献   


5.
An effective way to reduce the reflection of a multicrystalline solar cell is the use of a honeycomb structure, which can be generated by etching a mask isotropically. In this Letter, a directly printed hexagonal inkjet mask is presented. It results in a honeycomb texture with well developed and defined etch pits at an average distance of 50.1 μm and a weighted reflection of 18.4%. The major advantage of this mask is that the masking process is simple and that it has the potential of being fast and having low costs.

  相似文献   


6.
Acid texture is difficult for diamond wire sawn (DWS) multicrystalline silicon (mc‐Si) wafer owing to the inhomogeneous distribution of damage layer on the surface. In this article, metal‐assisted chemical etching (MACE) has been selected for introducing a porous seeding layer to induce acid texturing etching. SEM results show that the oval pit structures coverage get obvious improvement even on the smooth areas. Owing to the further improved light absorption ability by second MACE and nanostructure rebuilding (NSR) process, nanostructured DWS mc‐Si solar cell has exhibited a conversion efficiency of 17.96%, which is 0.45% higher than that of DWS wafer with simple acid texture process. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
We present metal wrap through (MWT) silicon solar cells with passivated surfaces based on a simplified device structure. This so‐called HIP‐MWT structure (high‐performance metal wrap through) does not exhibit an emitter on the rear side and therefore simplifies processing. The confirmed peak efficiency of the fabricated solar cells with an edge length of 125 mm, screen printed contacts and solder pads is 20.2%. To our knowledge, this is the highest value reported for large‐area p‐type silicon solar cells to date.

  相似文献   


8.
Light‐induced degradation (LID) has been identified to be a critical issue for solar cells processed on boron‐doped silicon substrates. Typically, Czochralski‐grown silicon (Cz‐Si) has been reported to suffer from stronger LID than block‐cast multicrystalline silicon (mc‐Si) due to higher oxygen concentrations. This work investigates LID under conditions practically relevant under module operation on different cell types. It is shown that aluminium oxide (AlOx) passivated mc‐Si solar cells degrade more than a reference aluminium back surface field mc‐Si cell and, remarkably, an AlOx passivated Cz‐Si solar cell. The defect which is activated by illumination is shown to be doubtful a sole bulk effect while the AlOx passivation might play a certain role. This work may contribute to a re‐evaluation of the suitability of boron‐doped Cz‐ and mc‐Si for solar cells with very high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
10.
Paper is a cheap substrate which is in principle compatible with the process temperature applied in the plasma enhanced chemical vapour deposition (PECVD) and hot wire CVD (HWCVD) of thin film silicon solar cells. The main drawback of paper for this application is the porosity due to its fibre like structure. The feature size (micrometre scale) is larger than the thickness of the applied photovoltaic layers. To overcome this problem, UV curable lacquer was used to planarize the surface. Plain 80 grams printer paper was taken as a substrate and the lacquer smoothens the rough surface of the paper such that a designed nanostructure can be imprinted for light scattering. In this manner single junction amorphous silicon solar cells with a HWCVD deposited intrinsic layer were processed on paper, without any concessions to the process temperature of 200 °C. The cell performance is comparable to that of reference cells grown on stainless steel, proving that solar cells can be deposited on paper substrates without sacrificing performance. PV on paper could be applied as ”disposable” power source for gadgets, electronic labelling, remote sensing systems, etc. (Internet of Things). (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
The BOSCO solar cell represents a bifacial structure with double‐sided collection. The structure allows the use of standard module interconnection technology and favours the use of material with low to medium diffusion length and low resistivity for maximum benefit towards other structures, such as Al‐BSF and PERC. Within this work, we present first results on different multicrystalline silicon materials yielding a monofacial efficiency of 17.4% on large‐area wafers from block‐cast mc‐Si. This value represents a gain of ~0.7%abs compared to Al‐BSF cells processed in parallel. The applicability for bifacial operation is demonstrated by a significantly increased quantum efficiency for rear side illumination. These results make the BOSCO solar cell concept a promising candidate to further boost the output of utility‐scale PV plants even when using low‐cost wafers of low to medium diffusion length material.

  相似文献   


12.
Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5 %. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-rim shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.  相似文献   

13.
We present an optimized contacting scheme for multicrystalline silicon thin film solar cells on glass based on epitaxially crystallized emitters with a thin Al2O3 layer and a silver back reflector. In a first step a 6.5 µm thick amorphous silicon absorber layer is crystallized by a diode laser. In a second step a thin silicon emitter layer is epitaxially crystallized by an excimer laser. The emitter is covered by an Al2O3 layer with a thickness ranging from 1.0 nm to 2.5 nm, which passivates the surface and acts as a tunnel barrier. On top of the Al2O3 layer a 90–100 nm thick silver back reflector is deposited. The Al2O3 layer was found to have an optimal thickness of 1.5 nm resulting in solar cells with back reflector that achieve a maximum open‐circuit voltage of 567 mV, a short‐circuit current density of 27.9 mA/cm2, and an efficiency of 10.9%. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
We demonstrate industrially feasible large‐area solar cells with passivated homogeneous emitter and rear achieving energy conversion efficiencies of up to 19.4% on 125 × 125 mm2 p‐type 2–3 Ω cm boron‐doped Czochralski silicon wafers. Front and rear metal contacts are fabricated by screen‐printing of silver and aluminum paste and firing in a conventional belt furnace. We implement two different dielectric rear surface passivation stacks: (i) a thermally grown silicon dioxide/silicon nitride stack and (ii) an atomic‐layer‐deposited aluminum oxide/silicon nitride stack. The dielectrics at the rear result in a decreased surface recombination velocity of Srear = 70 cm/s and 80 cm/s, and an increased internal IR reflectance of up to 91% corresponding to an improved Jsc of up to 38.9 mA/cm2 and Voc of up to 664 mV. We observe an increase in cell efficiency of 0.8% absolute for the cells compared to 18.6% efficient reference solar cells featuring a full‐area aluminum back surface field. To our knowledge, the energy conversion efficiency of 19.4% is the best value reported so far for large area screen‐printed solar cells. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
We present a‐Si:H/µc‐Si:H tandem solar cells on laser textured ZnO:Al front contact layers. Direct pulsed laser interference patterning (DLIP) was used for writing arrays of one‐dimensional micro gratings of submicron period into ZnO:Al films. The laser texture provides good light trapping which is indicated by an increase in short‐circuit current density of 20% of the bottom cell limited device compared to cells on planar ZnO:Al. The open‐circuit voltage of the cells on laser textured ZnO:Al is almost the same as for cells on planar substrates, indicating excellent growth conditions for amorphous and microcrystalline silicon on the U‐shaped grating grooves. DLIP is a simple, single step and industrially applicable method for large area periodic texturing of ZnO:Al thin films. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
Atomic‐layer‐deposited aluminum oxide (AlOx) layers are implemented between the phosphorous‐diffused n+‐emitter and the Al contact of passivated emitter and rear silicon solar cells. The increase in open‐circuit voltage Voc of 12 mV for solar cells with the Al/AlOx/n+‐Si tunnel contact compared to contacts without AlOx layer indicates contact passivation by the implemented AlOx. For the optimal AlOx layer thickness of 0.24 nm we achieve an independently confirmed energy conversion efficiency of 21.7% and a Voc of 673 mV. For AlOx thicknesses larger than 0.24 nm the tunnel probability decreases, resulting in a larger series resistance. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
提高微晶硅薄膜太阳电池效率的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用甚高频等离子体增强化学气相沉积技术制备了系列微晶硅薄膜太阳电池,指出了气体总流量和背反射电极的类型对电池性能参数的影响.电池的I-V测试结果表明:随反应气体总流量的增加,对应电池的短路电流密度、开路电压和填充因子都有很大程度的提高,结果使得电池的光电转换效率得以提高.另外,ZnO/Ag/Al背反射电极能明显提高电池的短路电流密度,进而也提高了电池的光电转换效率.对气体总流量和背反射电极类型影响电池效率的原因进行了分析. 关键词: 微晶硅薄膜太阳电池 气体流量 ZnO/Ag/Al背反射电极  相似文献   

19.
We evaluate industrial‐type PERC solar cells applying a 5 busbar front grid and fineline‐printed Ag fingers. We obtain finger widths down to 46 µm when using a stencil with 40 µm opening for the finger print, whereas the busbar is printed in a separate printing step with a different Ag paste (dual print). This compares to finger widths of 62 µm to 66 µm when applying print‐on‐print. The 5 busbar front grid with the best dual print process reduces the shadowing loss of the front grid to 4.0% compared to 5.8% for a conventional 3 busbar front grid printed with print‐on‐print. The 1.8% reduction in shadowing loss results in equal parts from the reduced finger width with dual print as well as from a reduced total busbar width of the 5 busbar design. The resulting PERC solar cells with 5 busbars demonstrate independently confirmed conversion efficiencies of 21.2% compared to 20.6% efficiency of the 3 busbar PERC solar cell. The increased conversion efficiency is primarily due to an increased short‐circuit current resulting from the reduced shadowing loss. To our knowledge, 21.2% conversion efficiency is the highest value reported so far for industry typical silicon solar cells with printed metal front and rear contacts. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so‐called tunnel oxide passivated contact structure for Si solar cells. They act as carrier‐selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high‐temperature anneal needed for the realization of the passivation quality of the carrier‐selective contacts. The good results on the phosphorus‐doped (implied Voc = 725 mV) and boron‐doped passivated contacts (iVoc = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号