首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Orthorhombic PbCO3, known as natural crystal cerussite, is presented as a new Stimulated Raman Scattering (SRS)‐active crystal. With picosecond laser pumping high‐order Raman‐induced χ(3) generation is observed. All registered Stokes and anti‐Stokes sidebands in the visible and near‐IR are identified and attributed to the SRS‐promoting phonon mode A1g of the carbonate group, with ωSRS ≈ 1054 cm−1. The first Stokes steady‐state Raman gain coefficient in the visible spectral range is estimated as well to a value not less than 4.6 cm·GW−1.  相似文献   

2.
In single crystals of the beryllium silicate Be2SiO4 with trigonal symmetry , known also as the mineral phenakite, χ(3)‐nonlinear lasing by stimulated Raman scattering (SRS) is investigated. All observed Stokes and anti‐Stokes lasing components are identified and ascribed to a single SRS‐promoting vibration mode with ωSRS ≈876 cm−1. With picosecond single‐wavelength pumping at one micrometer the generation of an octave‐spanning Stokes and anti‐Stokes comb is observed.  相似文献   

3.
We determined, for the first time, the room temperature phonon energy related to the F2g vibration mode (ωSRS(12C) ~ 1333.2 cm–1) in a mono‐crystalline single‐isotope CVD 12C‐diamond crystal by means of stimulated Raman scattering (SRS) spectroscopy. Picosecond one‐micron excitation using a Nd3+:Y3Al5O12‐laser generates a nearly two‐octave spanning SRS frequency comb (~12000 cm–1) consisting of higher‐order Stokes and anti‐Stokes components. The spacing of the spectral lines was found to differ by ΔωSRS ~ 0.9 cm–1 from the comb spacing (ωSRS(natC) ~ 1332.3 cm–1) when pumping a conventional CVD diamond crystal with a natural composition of the two stable carbon isotopes 12C (98.93%) and 13C (1.07%). (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
Lead carbonate chloride, Pb2CO3Cl2, known as mineral phosgenite, is introduced as a novel SRS‐active carbonate crystal with tetragonal symmetry. Under picosecond one‐micron laser pumping Raman‐induced χ(3)‐nonlinear generation in the near‐IR is observed. All recorded high‐order Stokes and anti‐Stokes sidebands are identified and attributed to two SRS‐promoting vibration modes with ωSRS1 ≈ 1062 cm–1 and ωSRS2 ≈ 86 cm–1.

  相似文献   


5.
In single crystals of orthorhombic YAlO3, widely known as a host‐matrix for Ln3+‐lasant ions, many‐phonon stimulated Raman scattering interactions as well as different manifestations of cascaded and cross‐cascaded nonlinear χ(3)↔χ(3) processes are initiated by picosecond laser pulses. The scientific and applicative potential of YAlO3 crystals is considerably expanded by the demonstration of its SRS properties. In particular, the studies revealed the manifestation of eight χ(3)‐active vibrational modes. The corresponding Stokes and anti‐Stokes lines have been assigned and the steady‐state Raman gain coefficients related to the strongest phonon mode have been estimated. In addition, a short review presents the stimulated emission channels of its Ln3+‐ions together with some χ(3)‐nonlinear laser properties of crystals belonging to the binary Y2O3‐Al2O3 system.  相似文献   

6.
Non‐degenerate second‐order scattering due to interaction of infrared and ultraviolet pulses is observed in picosecond infrared‐pump/anti‐Stokes Raman‐probe experiments under electronic resonance conditions. We detected resonance hyper‐Rayleigh scattering at the sum frequency of the pulses as well as the corresponding frequency‐down‐shifted resonance hyper‐Raman lines. Nearly coinciding resonance hyper‐Raman and one‐photon resonance Raman spectra indicate conditions of A‐term resonance Raman scattering. Second‐order scattering is distinguished from transient anti‐Stokes Raman scattering of v = 1 to v = 0 transitions and v = 1 to v′ = 1 combination transitions by taking into account their different spectral and temporal behaviour. Separating these processes is essential for a proper analysis of transient vibrational populations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
For calcite (CaCO3), one of the pioneer crystals in nonlinear optics, new results of stimulated Raman scattering (SRS) spectroscopy are presented. Among them are the discovery of a new SRS‐promoting vibration mode with ωSRS2 ≈︁ 282 cm‐1 and its participation, together with the main SRS mode ωSRS1 ≈︁ 1086.5 cm‐1, in cross‐cascaded (χ(3) ↔ χ(3)) nonlinear‐lasing generation, as well as the observation of efficient self‐upconversion via cascaded parametric four‐wave processes of one‐micron Stokes and anti‐Stokes χ(3)‐lasing into the UV‐region of third harmonic generation. The investigations show that calcite is able to generate a χ(3)‐lasing comb of more than two octaves bandwidth. The article also gives a brief review on the discovery and study of the SRS‐effect in natural crystals (minerals), which have expanded our ability to study the photon‐phonon nonlinear‐laser interactions in crystalline materials. A short summary of information about χ(3)‐lasing properties of the triangular planar structure units in SRS‐active crystals is included.  相似文献   

8.
Hexagonal Ca5(PO4)3F, known as natural crystal fluorapatite and oldest host‐crystal for Ln3+‐lasant ions, is presented as a Raman‐active material. High‐order Raman‐induced χ(3)‐nonlinear processes are discovered in natural crystals of fluorapatite under picosecond pumping at 1.064 μm and 0.532 μm wavelength. A multitude of Stokes and anti‐Stokes components is generated in the ultraviolet, visible and near‐infrared spectral region by stimulated Raman scattering (SRS) and Raman four‐wave mixing (FWHM), resulting in a frequency comb with a width of 520 THz. The spectral lines are identified and attributed to the ν1(Ag) vibration mode of the tetrahedral [PO4] units which is related to a Raman shift of ωSRS ≈ 965 cm−1. The first Stokes steady‐state Raman gain coefficient in the near‐infrared spectral range is estimated to be >0.38 cm·GW−1. Finally, a short review of SRS‐promoting vibration modes and observed χ(3)‐ nonlinear interactions in all known SRS‐active natural crystals (minerals) is given.

  相似文献   


9.
The non‐centrosymmetric polar tetragonal (P 41) barium antimony tartrate trihydrate, Ba[Sb2((+)C4H2O6)2]·3H2O, was found to be an attractive novel semi‐organic crystal manifesting numerous χ (2)‐ and χ (3)‐nonlinear optical interactions. In particular, with picosecond single‐ and dual‐wavelength pumping SHG and THG via cascaded parametric four‐wave processes were observed. High‐order Stokes and anti‐Stokes lasing related to two SRS‐promoting vibration modes of the crystal, with ωSRS1 ≈ 575 cm?1 and ωSRS2 ≈ 2940 cm?1, takes place. Basing on a spontaneous Raman investigation an assignment of the two SRS‐active vibration modes is discussed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号