首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
When S-termination on a Ge(1 0 0) surface was desorbed at an elevated temperature and an atomic layer deposition (ALD) HfO2 film was deposited, interfacial thickness was less than 1 nm. As a result, the equivalent oxide thickness (EOT) of the stack on the initially S-terminated surface was thinner than that deposited on the O3-oxidized surface, while HfO2 film thickness was almost identical on both surfaces. Nevertheless, the HfO2 stack on the initially S-terminated surface exhibited improved leakage current characteristics due to an increase in barrier height. Its thinner but robust interface will contribute to the scaling down of gate oxide integrity.  相似文献   

2.
Low refractive index polymer materials have been investigated with a view to form the back surface mirror of advanced silicon solar cells. SiOx:H or AlOy SiOx:H polymer films were spun on top of an ultra‐thin (<10 nm) atomic‐layer‐deposited (ALD) Al2O3 layer, itself deposited on low‐resistivity (1 Ω cm) p‐type crystalline silicon wafers. These double‐layer stacks were compared to both ALD Al2O3 single layers and ALD Al2O3/plasma‐enhanced chemical vapour deposited (PECVD) SiNx stacks, in terms of surface passivation, firing stability and rear‐side reflection. Very low surface recombination velocity (SRV) values approaching 3 cm/s were achieved with ALD Al2O3 layers in the 4–8 nm range. Whilst the surface passivation of the single ALD Al2O3 layer is maintained after a standard firing step typical of screen printing metallisation, a harsher firing regime revealed an enhanced thermal stability of the ALD Al2O3/SiOx:H and ALD Al2O3/AlOy SiOx:H stacks. Using simple two‐dimensional optical modelling of rear‐side reflection it is shown that the low refractive index exhibited by SiOx:H and AlOy SiOx:H results in superior optical performance as compared to PECVD SiNx, with gains in photogenerated current of ~0.125 mA/cm2 at a capping thickness of 100 nm. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In recent years Al2O3 has received tremendous interest in the photovoltaic community for the application as surface passivation layer for crystalline silicon. Especially p‐type c‐Si surfaces are very effectively passivated by Al2O3, including p‐type emitters, due to the high fixed negative charge in the Al2O3 film. In this Letter we show that Al2O3 prepared by plasma‐assisted atomic layer deposition (ALD) can actually provide a good level of surface passivation for highly doped n‐type emitters in the range of 10–100 Ω/sq with implied‐Voc values up to 680 mV. For n‐type emitters in the range of 100–200 Ω/sq the implied‐Voc drops to a value of 600 mV for a 200 Ω/sq emitter, indicating a decreased level of surface passivation. For even lighter doped n‐type surfaces the passivation quality increases again to implied‐Voc values well above 700 mV. Hence, the results presented here indicate that within a certain doping range, highly doped n‐ and p‐type surfaces can be passivated simultaneously by Al2O3. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We show that HfO2/AlGaN/GaN structures with HfO2 layer deposited using an e‐beam in ultra high vacuum are suitable for field effect transistors. The dielectric constant of the HfO2 was found εHfO > 23–24, which is close to the highest re‐ ported values for this material. The leakage current did not exceed 10–4 A/cm2 at the threshold voltage. The comparison of the losses in the samples with and without HfO2 indicates low concentration of the interface traps. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The unoccupied electronic structures of 5 nm thick high permittivity (k) oxides (HfO2, ZrO2, and Al2O3) and SiO2 films on Ge substrates were examined using O K‐edge X‐ray absorption spectroscopy. Comparative studies with those on Si substrates showed contrasts in the conduction bands, which should be due to the formation of interface states. In the Al2O3 and SiO2 films, GeO2 layers are formed at the interface and they suppress in part the formation of detrimental germanate phases. In contrast, in the HfO2 and ZrO2 films, no signature of the Ge‐oxide phase is observed but some germanate phases are expected to prevail, suggesting a degradation of the gate oxide characteristics. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
HfO2 films 5 nm thick grown on Si(100) substrates by the methods of MOCVD hydride epitaxy and atomic layer deposition (ALD) are studied using X-ray photoelectron spectroscopy combined with Ar+ ion etching and X-ray reflectometry. It is found that (i) the ALD-grown HfO2 films are amorphous, while the MOCVD-grown films show signs of a crystal structure; (ii) the surface of the ALD-grown films is more prone to contamination and/or is more reactive; and (iii) the amount of interfacial silicon dioxide in the case of the MOCVD-grown film is greater than in the case of the films synthesized by ALD. It is also shown that the argon ion etching of the HfO2 film results in the formation of a metallic hafnium layer at the interface. This indicates that HfO2 can be used not only as a gate dielectric but also as a material suitable for fabricating nanodimensional conductors by direct decomposition.  相似文献   

7.
Trimethylaluminum pretreatment prior to HfO2 deposition is introduced for native oxide reduction. It is identified that the trimethylaluminum pretreatment could effectively reduce native oxide, which is transformed to an aluminum oxide interfacial layer. Formation of the thin aluminum oxide layer suppresses Ge diffusion into HfO2, reducing hysteresis in the ca‐ pacitance–voltage curve. Moreover, the device reliability of the trimethylaluminum pretreated sample is improved in a constant current stress test. This work indicates that trimethylaluminum pretreatment is an effective in‐situ method for the gate dielectric stack formation to reduce charge trapping in the HfO2 film on a Ge substrate. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The energy diagram of RuO2/Al‐doped TiO2/RuO2 structures was estimated from the capacitance–voltage and leakage current density–voltage curves. The Al‐doping profile in TiO2 film was varied by changing position of the atomic layer deposition cycle of Al2O3 during the atomic layer deposition of 9 nm‐thick TiO2 film. The interface between the TiO2 film and the RuO2 electrode containing Al‐doping layer showed a higher Schottky barrier by 0.1 eV compared with the opposite interface without the doping layer. The evolution of various leakage current profiles upon increasing the bias with opposite polarity could be well explained by the asymmetric Schottky barrier. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
Chemical reactivity of fluorine molecule (F2)-germanium (Ge) surface and dissociation of fluorine (F)-Ge bonding have been simulated by semi-empirical molecular orbital method theoretically, which shows that F on Ge surface is more stable compared to hydrogen. Ge MIS (metal insulator semiconductor) capacitor has been fabricated by using F2-treated Ge(1 0 0) substrate and HfO2 film deposited by photo-assisted MOCVD. Interface state density observed as a hump in the C-V curve of HfO2/Ge gate stack and its C-V hysteresis were decreased by F2-treatment of Ge surface. XPS (X-ray photoelectron spectroscopy) depth profiling reveals that interfacial layer between HfO2 and Ge is sub-oxide layer (GeOx or HfGeOx), which is believed to be origin of interface state density.F was incorporated into interfacial layer easily by using F2-treated Ge substrate. These results suggest that interface defect of HfO2/Ge gate stack structure could be passivated by F effectively.  相似文献   

10.
HfO2 films are deposited by atomic layer deposition (ALD) using tetrakis ethylmethylamino hafnium (TEMAH) as the hafnium precursor, while O3 or H2O is used as the oxygen precursor. After annealing at 500℃ in nitrogen, the thickness of Ge oxide's interfacial layer decreases, and the presence of GeO is observed at the H2O-based HfO2 interface due to GeO volatilization, while it is not observed for the O3-based HfO2. The difference is attributed to the residue hydroxyl groups or H2O molecules in H2O-based HfO2 hydrolyzing GeO2 and forming GeO, whereas GeO is only formed by the typical reaction mechanism between GeO2 and the Ge substrate for O3-based HfO2 after annealing. The volatilization of GeO deteriorates the characteristics of the high-κ films after annealing, which has effects on the variation of valence band offset and the C–V characteristics of HfO2/Ge after annealing. The results are confirmed by X-ray photoelectron spectroscopy (XPS) and electrical measurements.  相似文献   

11.
Grazing‐incidence small‐angle X‐ray scattering (GISAXS) measurements with soft X‐rays have been applied to Ge nanodots capped with a Si layer. Spatially anisotropic distribution of nanodots resulted in strongly asymmetric GISAXS patterns in the qy direction in the soft X‐ray region, which have not been observed with conventional hard X‐rays. However, such apparent differences were explained by performing a GISAXS intensity calculation on the Ewald sphere, i.e. taking the curvature of Ewald sphere into account.  相似文献   

12.
It is demonstrated that the application of an ultrathin aluminum oxide (Al2O3) capping film can improve the level of silicon surface passivation obtained by low‐temperature synthesized SiO2 profoundly. For such stacks, a very high level of surface passivation was achieved after annealing, with Seff < 2 cm/s for 3.5 Ω cm n‐type c‐Si. This can be attributed primarily to a low interface defect density (Dit < 1011 eV–1 cm–2). Consequently, the Al2O3 capping layer induced a high level of chemical passivation at the Si/SiO2 interface. Moreover, the stacks showed an exceptional stability during high‐temperature firing processes and therefore provide a low temperature (≤400 °C) alternative to thermally‐grown SiO2. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Energy state and coordination of fluorine (F)-passivated Ge surface have been theoretically analyzed by semi-empirical molecular orbital method in comparison with hydrogen-passivated Ge surface to predict usefulness of F for passivation element and surface stabilization. Heat of formation for the reaction of F atoms and Ge layer system decreased simultaneously without energy barrier. Resultantly, F-Ge bonds were formed on Ge layer system and Ge surface dangling bonds were passivated by F dissimilar to the reaction of H atoms and Ge layer system. Furthermore, it was confirmed experimentally that the electrical properties of HfO2/Ge gate stack were improved by F2-ambient treatment of Ge substrate prior to HfO2 deposition. It is concluded that F-passivation of Ge surface is useful in making stable and low-defective Ge substrate for high-k dielectric layer deposition.  相似文献   

14.
Growth and interfacial properties of atomic layer deposited Al0.7Ti0.3O y on Ge have been investigated as a potential high-k gate dielectric for future Ge-based metal oxide semiconductor devices. A sandwich structure of Al2O3/TiO2 stack is proposed for Al2O3/TiO2 intermixing and high-k/Ge interfacial passivation. The film thicknesses and interface microstructure are characterized by spectroscopy ellipsometry and high-resolution transmission electron microscopy. X-ray photoelectron spectrometry is used to analyze the chemical composition and bonding states, and to reveal the band alignment of high-k/Ge heterojunctions. Metal-oxide-capacitors are formed by depositing aluminum electrodes to perform capacitance–voltage measurements for electrical characteristics. All evidences show a positive prospect of employing atomic layer deposited Al0.7Ti0.3O y as high-k gate dielectric for future Ge-based devices.  相似文献   

15.
Al2O3 incorporated HfO2 films grown by atomic layer deposition (ALD) were investigated by high-resolution X-ray photoelectron spectroscopy (HRXPS). The core level energy state of a 15 Å thick film showed a shift to higher binding energy, as the result of a silicate formation and Al2O3 incorporation. The incorporation of Al2O3 into the HfO2 film had no effect on silicate formation at the interface between the film and Si, while the ionic bonding characteristics and hybridization effects were enhanced compared to a pure HfO2 film. The dissociation of the film in an ultrahigh vacuum (UHV) is effectively suppressed compared to a pure HfO2 film, indicating an enhanced thermal stability of Hf-Al-O. Any dissociated Al2O3 on the film surface was completely removed into the vacuum by vacuum annealing treatment over 850 °C, while HfO2 contributed to Hf silicide formation on the film surface.  相似文献   

16.
A key requirement in the recent development of highly efficient silicon solar cells is the outstanding passivation of their surfaces. In this work, plasma enhanced chemical vapour deposition of a triple layer dielectric consisting of amorphous silicon, silicon oxide and silicon nitride, charged extrinsically using corona, has been used to demonstrate extremely low surface recombination. Assuming Richter's parametrisation for bulk lifetime, an effective surface recombination velocity Seff = 0.1 cm/s at Δn = 1015 cm–3 has been obtained for planar, float zone, n ‐type, 1 Ω cm silicon. This equates to a saturation current density J0s = 0.3 fA/cm2, and a 1‐sun implied open‐circuit voltage of 738 mV. These surface recombination parameters are among the lowest reported for 1 Ω cm c‐Si. A combination of impedance spectroscopy and corona‐lifetime measurements shows that the outstanding chemical passivation is due to the small hole capture cross section for states at the interface between the Si and a‐Si layer which are hydrogenated during nitride deposition. (© 2016 The Authors. Phys. Status Solidi RRL published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Among the methods for depositing thin films, atomic layer deposition is unique for its capability of growing conformal thin films of compounds with a control of composition and thickness at the atomic level. The conformal growth of thin films can be of particular interest for covering nanostructures since it assures the homogeneous growth of the ALD film in all directions, independent of the position of the sample with respect to the incoming precursor flow. Here we describe the technique for growing the HfO2/Al2O3 bilayer on Si substrate and our in situ approach for its investigation by means of synchrotron radiation photoemission. In particular, we study the interface interactions between the two oxides for various thickness compositions ranging from 0.4 to 2.7 nm. We find that the ALD of HfO2 on Si induces the increase of the interfacial SiO2 layer, and a change in the band bending of Si. On the contrary, the ALD of Al2O3 on HfO2 shows negligible interaction between layers as the binding energies of Hf4f, Si2p, and O1s core level peaks and the valence band maximum of HfO2 do not change and the interfacial SiO2 does not increase.  相似文献   

18.
This value is achieved due to a very low interface trap density of below 1010 eV–1 cm–2 and a fixed charge density of (2–3) × 1012 cm–2. In contrast, plasma ALD‐grown Al2O3 layers only reach carrier lifetimes of about 1 ms. This is mainly caused by a more than 10 times higher density of interface traps, and thus, inferior chemical passivation. The strong influence of the deposition parameters is explained by the limitation of hydrogen transport in Al2O3 during low‐thermal budget annealing. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
The effects of both the deposition temperature and the HfO2 film thickness on the interfacial layer (IL) evolution were studied when tetrakis(ethylmethylamino)hafnium and H2O based atomic layer deposition (ALD) was performed on InP substrates. While the self‐cleaning effect resulted in an IL‐free structure after formation of ~2 nm thick HfO2 at 200 °C and 250 °C, substantial IL growth occurred at 300 °C, probably due to simultaneous InP oxidation. Following further growth to ~8 nm at 300 °C, the IL was almost removed and, in particular, a significant In incorporation into the HfO2 film was observed, which was attributed to IL decomposition and subsequent out‐diffusion of the constituent elements. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We investigate the effect of O3 and H2O oxidant pre‐pulse prior to Al2O3 atomic layer deposition for Si surface passivation. Interfacial oxide SiOx formed by the O3 pre‐pulse is more beneficial than that by H2O to a high level of surface passivation. The passivation of thinner H2O–Al2O3 films is more improved by this O3 pre‐pulse. O3 pre‐pulse for 10 nm H2O–Al2O3 reduces saturation current density in boron emitter to 18 fA cm–2 by a factor of 1.7. Capacitance–voltage measurements reveal this interfacial oxide plays a role of decreasing interface trap density without detrimental effect to negative charge density of Al2O3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号