首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A demonstration that boron–oxygen related degradation in boron‐doped Czochralski silicon could be caused by a single defect with two trap energy levels is presented. In this work, the same two‐level defect can describe the fast and slow lifetime decay with a capture cross‐section ratio of electrons and holes for the donor level of σn/σp = 19 ± 4. A model is proposed for the multi‐stage degradation involving a single defect, in which the product of the slow reaction is a reactant in the fast reaction. After thermal processing, a population of interstitial oxygen (Oi) exists in a certain state (the precursor state) that can rapidly form defects (fast degradation) and another population of Oi exists in a state that is required to undergo a slow transformation into the precursor state before defect formation can proceed (slow degradation). Kinetic modelling is able to adequately reproduce the multi‐stage degradation for experimental data. Dark annealing is also shown to impact the extent of ‘fast’ degradation. By decreasing the dark annealing time on pre‐degraded wafers, a more severe ‘fast’ degradation of the samples can be enabled during subsequent illumination, consistent with this theory. The paper then discusses possible candidates for the chemical species involved. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
This Letter reports on the acceleration of the rate of formation of the boron–oxygen defect in p‐type Czochralski silicon with illumination intensities in excess of 2.1 × 1017 photons/cm2/s. It is observed that increased light intensities greatly enhance the rate of defect formation, without increasing the saturation concentration of the defect. These results suggest a dependence of the defect formation rate upon the total majority carrier concentration. Finally, a method using temperatures up to 475 K and an illumination intensity of 1.68 × 1019 photons/cm2/s is shown to result in near‐complete defect formation within seconds. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
We report on a light‐induced bulk defect activation and subsequent deactivation in boron doped float‐zone silicon that can be described by a 3‐state model. During treatment at elevated temperature and illumination, a sample first converts from an initial high lifetime state into a degraded low lifetime state and then shows a recovery reaction leading to a third high lifetime state that is then stable under degradation conditions. Furthermore, it is shown that reverse reactions into the initial state appear to be possible both from the degraded as well as the regenerated state. An injection dependent analysis of lifetime data yields a defect capture cross section ratio of ~20 suggesting a positively charged defect. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
Light‐induced degradation of charge carrier lifetime was observed in indium‐doped silicon. After defect formation, an annealing step at 200 °C for 10 min deactivates the defect and the initial charge carrier lifetime is fully recovered. The observed time range of the defect kinetics is similar to the well known defect kinetics of the light‐induced degradation in boron‐doped samples. Differences between defect formation in boron‐ and indium‐doped silicon are detected and discussed. A new model based on an acceptor self‐interstitial ASi–Sii defect is proposed and established with experimental findings and existing ab‐initio simulations.

  相似文献   


5.
6.
Annealing effect of the oxygen precipitation and the induced defects have been investigated on the fast neutron irradiated Czochralski silicon (CZ-Si) by infrared absorption spectrum and the optical microscopy. It is found that the fast neutron irradiation greatly accelerates the oxygen precipitation that leads to a sharp decrease of the interstitial oxygen with the annealing time. At room temperature (RT), the 1107cm^-1 infrared absorption band of interstitial oxygen becomes weak and broadens to low energy side. At low temperature, the infrared absorption peaks appear at 1078cm^-1, 1096cm^-1, and 1182cm^-1, related to different shapes of the oxygen precipitates. The bulk microdefects, including stacking faults, dislocations and dislocation loops, were observed by the optical microscopy. New or large stacking faults grow up when the silicon self-interstitial atoms are created and aggregate with oxygen precipitation.  相似文献   

7.
The effects of fast neutron irradiation on oxygen atoms in Czochralski silicon (CZ-Si) are investigated systemically by using Fourier transform infrared (FTIR) spectrometer and positron annihilation technique (PAT). Through isochronal annealing, it is found that the trend of variation in interstitial oxygen concentration ([Oi]) in fast neutrons irradiated CZ-Si fluctuates largely with temperature increasing, especially between 500 and 700℃. After the CZ-Si is annealed at 600℃, the V4 appearing as three-dimensional vacancy clusters causes the formation of the molecule-like oxygen clusters, and more importantly these dimers with small binding energies (0.1--1.0eV) can diffuse into the Si lattices more easily than single oxygen atoms, thereby leading to the strong oxygen agglomerations. When the CZ-Si is annealed at temperature increasing up to 700℃, three-dimensional vacancy clusters disappear and the oxygen agglomerations decompose into single oxygen atoms (O) at interstitial sites. Results from FTIR spectrometer and PAT provide an insight into the nature of the [Oi] at temperatures between 500 and 700℃. It turns out that the large fluctuation of [Oi] after short-time annealing from 500 to 700℃ results from the transformation of fast neutron irradiation defects.  相似文献   

8.
崔灿  马向阳  杨德仁 《物理学报》2008,57(2):1037-1042
研究了直拉硅片从不同的温度线性升温(Ramping)到750℃,然后在750℃退火64 h过程中的氧沉淀行为. 结果表明,Ramping对硅片中氧沉淀的形成有明显的促进作用,且起始温度越低促进作用越强. 这是因为在Ramping处理中,低温(450—650℃)热处理阶段氧的扩散速率显著增强,促进了氧沉淀核心的形成,且较低的Ramping升温速率有利于氧沉淀核心的稳定和继续长大. 进一步的实验结果还表明,低起始温度的Ramping处理可应用于硅片的内吸杂工艺,能促进氧沉淀的生成提高硅片的内吸杂能力,减少热预 关键词: 直拉硅 氧沉淀 退火  相似文献   

9.
崔灿  马向阳  杨德仁 《中国物理 B》2008,17(2):1037-1042
研究了直拉硅片从不同的温度线性升温(Ramping)到750℃,然后在750℃退火64 h过程中的氧沉淀行为. 结果表明,Ramping对硅片中氧沉淀的形成有明显的促进作用,且起始温度越低促进作用越强. 这是因为在Ramping处理中,低温(450—650℃)热处理阶段氧的扩散速率显著增强,促进了氧沉淀核心的形成,且较低的Ramping升温速率有利于氧沉淀核心的稳定和继续长大. 进一步的实验结果还表明,低起始温度的Ramping处理可应用于硅片的内吸杂工艺,能促进氧沉淀的生成提高硅片的内吸杂能力,减少热预  相似文献   

10.
研究了掺氮直拉硅单晶(NCZ)中氮在高温退火过程中对氧沉淀的影响.通过不同温度高温退 火后,测量氧沉淀的生成量和观察硅片体内微缺陷(BMD)密度与高温形核时间的变化关系 ,同时用透射电子显微镜(TEM)观察氧沉淀及相关缺陷的微观结构.实验结果表明高温退火后 氮对硅中氧沉淀形核有明显的促进作用,在相同退火条件下NCZ硅中BMD密度要远远高于相应 的普通直拉硅.这是由于氮在高温下与氧反应形成氮氧复合体(N-V-O)促进了氧沉淀的形核 ,而且TEM的结果表明氧沉淀的形态都是平板状,周围存在应力场. 关键词: 直拉硅 掺氮 氧沉淀  相似文献   

11.
In this study, we uncover a recombination‐active grown‐in defect reducing the minority carrier lifetime of Czochralski grown n‐type silicon from 5 ms to below 2 ms. We also demonstrate that the defect can be de‐activated by annealing between 300 °C and 360 °C. Our experimental findings suggest that vacancy‐related pairs incorporated during ingot growth may be responsible for the decreased minority carrier lifetime. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this work, we investigated the stoichiometry of oxygen precipitates in Czochralski silicon wafers. The thickness dependence of the Cliff–Lorimer sensitivity factor for the silicon/oxygen system was determined and applied for the investigation of the stoichiometry of oxygen precipitates by EDX. The results show that both plate‐like oxygen precipitates and a transitional form between plate‐like and octahedral precipi‐ tates consist of SiO2. This was confirmed by EELS low loss spectra where the typical spectrum for amorphous SiO2 was observed. Moreover, the absorption band of plate‐like precipitates at 1227 cm–1 was found in the low temperature FTIR spectrum. It was demonstrated that this band can only be simulated by the dielectric constants of amorphous SiO2. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
快中子辐照直拉硅(CZ-Si)经400-450℃热处理后,空位-双氧复合体(VO2)是其主要的缺陷.在300-500℃热处理快中子辐照的CZ-Si后,IR光谱中有919.6cm^-1和1006cm^-1两个吸收峰伴随VO2(889cm^-1)出现,这两个IR吸收峰是VO2的一种亚稳态缺陷(O-V-O)引起的,此缺陷态是由一个VO(A中心)与次临近的一个间隙氧原子(Oi)相互作用所形成的.在300℃延长退火时间或升高退火温度,都会使(O-V-O)转变为稳态VO2.辐照剂量在10^19数量级,经400-450℃热处理所形成的缺陷主要为多空位型,而VO2被抑制.  相似文献   

14.
通过对比研究重掺砷直拉硅片和轻掺n型直拉硅片经过低温(450—800℃)和高温(1000℃)两步退火的氧沉淀行为,阐明了低温退火对重掺掺砷直拉硅片的氧沉淀形核的作用.研究指出:重掺砷硅片在450℃和650℃退火时的氧沉淀形核比在800℃退火时更显著,这与轻掺硅片的情况截然相反;此外,与轻掺硅片相比,重掺砷硅片在450℃和650℃退火时氧沉淀的形核得到增强,而在800℃退火时氧沉淀的形核受到抑制.分析认为,重掺砷硅片在450℃和650℃退火时会形成砷-空位-氧(As-V-O)复合体,它们促进了 关键词: 重掺砷直拉硅片 氧沉淀形核 低温退火  相似文献   

15.
Light‐ and elevated temperature‐induced degradation in multicrystalline silicon can reduce the efficiency of solar cells significantly. In this work, the influence of the firing process and its temperature profile on the degradation behaviour of neighbouring mc‐Si wafers is analysed. Five profiles with measured high peak temperatures ≥800 °C and varying heating and cooling ramps are examined. With spatially resolved and lifetime calibrated photoluminescence images, normalized defect concentrations N*t are calculated to determine the degradation intensity. Wafers that underwent a fast firing process typical for industrial solar cell production show a significantly stronger degradation than samples that were subjected to the same peak temperature but with slower heating and cooling rates. A spatially resolved analysis of the carrier lifetime in the whole wafer shows that the degradation begins in low lifetime areas around dislocation clusters, spreading into good grains after several hours. By the use of optimized ramp‐up and/or ramp‐down rates during the firing even at very high peak temperatures, light and elevated temperature induced degradation can be suppressed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
Recently, a new carrier‐induced defect has been reported in multi‐crystalline silicon (mc‐Si), and has been shown to be particularly detrimental to the performance of passivated emitter and rear contact (PERC) cells. Under normal conditions, this defect can take years to fully form. This Letter reports on the accelerated formation and subsequent passivation of this carrier‐induced defect through the use of high illumination intensity and elevated temperatures resulting in passivation within minutes. The process was tested on industrial mc‐Si PERC solar cells, where degradation after a 100 hour stability test was suppressed to only 0.1% absolute compared to 2.1% for non‐treated cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
快中子辐照直拉硅(CZ-Si)经400—450℃热处理后,空位_双氧复合体(VO2)是其 主要 的缺陷.在300—500℃热处理快中子辐照的CZ_Si后,IR光谱中有919.6cm-1和 1006cm-1两个吸收峰伴随VO2(889cm-1)出现,这两个IR吸收 峰是VO2的一种亚稳态缺陷(O-V-O)引起的,此缺陷态是由一个VO(A中心)与次临近的一个 间隙氧原子(Oi)相互作用所形成的.在300℃延长退火时间或升高退火温度,都 会使(O -V-O)转变为稳态VO2.辐照剂量在1019数量级,经400—450℃热处 理所形成的缺陷主要为多空位型,而VO2被抑制.  相似文献   

18.
硼对沉积本征微晶硅薄膜特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术制备了不同腔室环境下的微晶硅薄膜.对单室沉积掺杂层p材料后遗留在腔室中的硼对本征微晶i材料电学特性和结构特性的影响进行了详细研究.测试结果表明:单室沉积p层后的硼降低了微晶i层材料的暗电导,增加了材料的光敏性;由于硼对i层污染程度的不同,使得材料的激活能发生了变化;腔室中残余的硼也导致微晶硅薄膜的结晶状况恶化,同时弱化了材料的(220)择优取向.而在较高功率和较强氢稀释下制备的晶化率较高,(220)晶向明显择优的材料受硼污染影响相对减小. 关键词: 单室 甚高频等离子体增强化学气相沉积 微晶硅 硼  相似文献   

19.
The radial distribution of iron in Cz‐Si crystals grown from photovoltaic grade feedstock was analysed using deep level transient spectroscopy (DLTS). A high temperature annealing sequence followed by fast quenching to 273 K was used to transform iron silicide precipitates, formed after the crystal growth, to iron‐containing species detectable by DLTS. The results suggest a homogeneous radial distribution of iron over the crystal. From comparison of as‐grown and annealed samples, a strong suppression of iron precipitation close to the walls of the crystals becomes obvious and possible mechanisms of this phenomenon are discussed. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The bistable thermal donors in Czochralski-grown silicon crystals were investigated by EPR spectroscopy and IR-absorption techniques. It is shown that using heat treatment at a temperature ≤400°C and appropriate conductivity compensation by irradiation with 3.5 MeV electrons, one can select from the total signal the EPR-signal associated with only one type, namely TDD2, of the thermal donors. Based on the model of a two-center core structure of the given complexes, an explanation of the EPR-spectroscopy data on the oxygen thermal donors in silicon is suggested. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 2, pp. 188–191, March–April, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号